• BiP;
  • cortex;
  • GRP78;
  • sleep;
  • unfolded protein response


Little is known about the molecular mechanisms underlying sleep. We show the induction of key regulatory proteins in a cellular protective pathway, the unfolded protein response (UPR), following 6 h of induced wakefulness. Using C57/B6 male mice maintained on a 12:12 light/dark cycle, we examined, in cerebral cortex, the effect of different durations of prolonged wakefulness (0, 3, 6, 9 and 12 h) from the beginning of the lights-on inactivity period, on the protein expression of BiP/GRP78, a chaperone and classical UPR marker. BiP/GRP78 expression is increased with increasing durations of sleep deprivation (6, 9 and 12 h). There is no change in BiP/GRP78 levels in handling control experiments carried out during the lights-off period. PERK, the transmembrane kinase responsible for attenuating protein synthesis, which is negatively regulated by binding to BiP/GRP78, is activated by dissociation from BiP/GRP78 and by autophosphorylation. There is phosphorylation of the elongation initiation factor 2α and alteration in ribosomal function. These changes are first observed after 6 h of induced wakefulness. Thus, prolonging wakefulness beyond a certain duration induces the UPR indicating a physiological limit to wakefulness.