Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's disease-linked point mutations

Authors

  • Cheng Wang,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
    • These authors contributed equally to this work.

  • ,,,1 Jeanne M. M. Tan,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
    • These authors contributed equally to this work.

  • ,1 Michelle W. L. Ho,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
  • Norazean Zaiden,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
  • Siew Heng Wong,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
  • Constance L. C. Chew,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
  • Pei Woon Eng,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
  • Tit Meng Lim,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
  • Ted M. Dawson,

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author
  • and , Kah Leong Lim

    1. *Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
      Departments of †Biological Sciences and ‡Microbiology, National University of Singapore, Singapore
      §School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
      ¶Institute for Cell Engineering. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Search for more papers by this author

Address correspondence and reprint requests to Kah-Leong-Lim, Neurodegeneration Research Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433.
E-mail: Kah_Leong_Lim@nni.com.sg

Abstract

Mutations in the parkin gene, which encodes a ubiquitin ligase, are currently recognized as the main contributor to familial forms of Parkinson's disease (PD). A simple assumption about the effects of PD-linked mutations in parkin is that they impair or ablate the enzyme activity. However, a number of recent studies, including ours, have indicated that many disease-linked point mutants of parkin retain substantial catalytic activity. To understand how the plethora of mutations on parkin contribute to its dysfunction, we have conducted a systematic analysis of a significant number of parkin point mutants (22 in total), which represent the majority of parkin missense/nonsense mutations reported to date. We found that more than half of these mutations, including many located outside of the parkin RING fingers, produce alteration in the solubility of parkin which influences its detergent extraction property. This mutation-mediated alteration in parkin solubility is also associated with its propensity to form intracellular, aggresome-like, protein aggregates. However, they do not represent sites where parkin substrates become sequestered. As protein aggregation sequesters the functional forms away from their normal sites of action, our results suggest that alterations in parkin solubility and intracellular localization may underlie the molecular basis of the loss of function caused by several of its mutations.

Ancillary