SEARCH

SEARCH BY CITATION

References

  • Ainscow E. K., Mirshamsi S., Tang T., Ashford M. L. and Rutter G. A. (2002) Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K (+) channels. J. Physiol. 544, 429445.
  • Akaoka H., Szymocha R., Beurton-Marduel P., Bernard A., Belin M. F. and Giraudon P. (2001) Functional changes in astrocytes by human T-lymphotropic virus type-1 T-lymphocytes. Virus Res. 78, 5766.
  • Assaf H. M., Ricci A. J., Whittingham T. S., LaManna J. C., Ratcheson R. A. and Lust W. D. (1990) Lactate compartmentation in hippocampal slices: evidence for a transporter. Metab. Brain Dis. 5, 143154.
  • Baud O., Fayol L., Gressens P., Pellerin L., Magistretti P., Evrard P. and Verney C. (2003) Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J. Comp. Neurol. 465, 445454.
  • Bergersen L., Johannsson E., Veruki M. L., Nagelhus E. A., Halestrap A. P., Sejersted O. M. and Ottersen O. P. (1999) Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 90, 319331.
  • Bergersen L., Waerhaug O., Helm J., Thomas M., Laake P., Davies A. J., Wilson M. C., Halestrap A. P. and Ottersen O. P. (2001) A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors inpostsynaptic densities of parallel fiber-Purkinje cell synapses. Exp. Brain Res. 136, 523534.
  • Bergersen L., Rafiki A. and Ottersen O. P. (2002) Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem. Res. 27, 8996.
  • Bergersen L., Magistretti P. J. and Pellerin L. (2005) Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb. Cortex 15, 361370.
  • Biggers D. W., Myers S. R., Neal D., Stinson R., Cooper N. B., Jaspan J. B., Williams P. E., Cherrington A. D. and Frizzel R. T. (1989) Role of brain in counterregulation of insulin-induced hypoglycemia in dogs. Diabetes 37, 716.
  • Bliss T. M., Ip M., Cheng E., Minami M., Pellerin L., Magistretti P. and Sapolsky R. M. (2004) Dual-gene, dual-cell type therapy against an excitotoxic insult by bolstering neuroenergetics. J. Neurosci. 24, 62026208.
  • Bonen A., Tonouchi M., Miskovic D., Heddle C., Heikkila J. J. and Halestrap A. P. (2000) Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity. Am. J. Physiol. Endocrinol. Metab. 279, E1131E1138.
  • Bonvento G., Sibson N. and Pellerin L. (2002) Does glutamate image your thoughts? Trends Neurosci. 25, 359364.
  • Borg M. A., Tamborlane W. V., Shulman G. I. and Sherwin R. S. (2003) Local lactate perfusion of the ventromedial hypothalamus suppresses hypoglycemic counterregulation. Diabetes 52, 663666.
  • Boussouar F., Mauduit C., Tabone E., Pellerin L., Magistretti P. J. and Benahmed M. (2003) Developmental and hormonal regulation of the monocarboxylate transporter 2 (MCT2) expression in the mouse germ cells. Biol. Reprod. 69, 10691078.
  • Bouzier A. K., Voisin P., Goodwin R., Canioni P. and Merle M. (1998) Glucose and lactate metabolism in C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism. Dev. Neurosci. 20, 331338.
  • Bouzier A. K., Thiaudiere E., Biran M., Rouland R., Canioni P. and Merle M. (2000) The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J. Neurochem. 75, 480486.
  • Bouzier-Sore A. K., Merle M., Magistretti P. J. and Pellerin L. (2002) Feeding active neurons: (re)emergence of a nursing role for astrocytes. J. Physiol. (Paris) 96, 273282.
  • Bouzier-Sore A. K., Voisin P., Canioni P., Magistretti P. J. and Pellerin L. (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J. Cereb. Blood Flow Metab. 23, 12981306.
  • Bröer S., Rahman B., Pellegri G., Pellerin L., Martin J. L., Verleysdonk S., Hamprecht B. and Magistretti P. J. (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J. Biol. Chem. 272, 30 09630 102.
  • Bröer S., Schneider H. P., Bröer A., Rahman B., Hamprecht B. and Deitmer J. W. (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem. J. 333, 167174.
  • Bröer S., Bröer A., Schneider H. P., Stegen C., Halestrap A. P. and Deitmer J. W. (1999) Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem. J. 341, 529535.
  • Brown A. M. (2004) Brain glycogen re-awakened. J. Neurochem. 89, 537552.
  • Brown A. M., Tekkok S. B. and Ransom B. R. (2003) Glycogen regulation and functional role in mouse white matter. J. Physiol. 549, 501512.
  • Carpenter L. and Halestrap A. P. (1994) The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem. J. 304, 751760.
  • Cater H. L., Benham C. D. and Sundstrom L. E. (2001) Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. J. Physiol. 531, 459466.
  • Cater H. L., Chandratheva A., Benham C. D., Morrison B. and Sundstrom L. E. (2003) Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices. J. Neurochem. 87, 13811390.
  • Cornford E. M. and Cornford M. E. (1986) Nutrient transport and the blood–brain barrier in developing animals. Fed. Proc. 45, 20652072.
  • Cornford E. M., Braun L. D. and Oldendorf W. H. (1982) Developmental modulations of blood–brain barrier permeability as an indicator of changing nutritional requirements in the brain. Pediatr. Res. 16, 324328.
  • Cremer J. E. (1982) Substrate utilization and brain development. J. Cereb. Blood Flow Metab. 2, 394407.
  • Cremer J. E., Braun L. D. and Oldendorf W. H. (1976) Changes during development in transport processes of the blood–brain barrier. Biochim. Biophys. Acta 448, 633637.
  • Cuff M. A. and Shirazi-Beechey S. P. (2002) The human monocarboxylate transporter, MCT1: genomic organization and promoter analysis. Biochem. Biophys. Res. Commun. 292, 10481056.
  • Dalsgaard M. K., Quistorff B., Danielsen E. R., Selmer C., Vogelsang T. and Secher N. H. (2003) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J. Physiol. 554(Pt 2), 571578.
  • De Bruijne A. W., Vreeburg H. and Van Steveninck J. (1983) Kinetic analysis of l-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. Biochim. Biophys. Acta 732, 562568.
  • De Bruijne A. W., Vreeburg H. and Van Steveninck J. (1985) Alternative-substrate inhibition of l-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. Biochim. Biophys. Acta 812, 841844.
  • Debernardi R., Pierre K., Lengacher S., Magistretti P. J. and Pellerin L. (2003) Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. J. Neurosci. Res. 73, 141155.
  • Dimmer K. S., Friedrich B., Lang F., Deitmer J. W. and Broer S. (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219227.
  • Dombrowski G. J. Jr, Swiatek K. R. and Chao K. L. (1989) Lactate, 3-hydroxybutyrate, and glucose as substrates for the early postnatal rat brain. Neurochem. Res. 14, 667675.
  • Dringen R., Schmoll D., Cesar M. and Hamprecht B. (1993a) Incorporation of radioactivity from [14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in brain cells. Biol. Chem. Hoppe Seyler 374, 343347.
  • Dringen R., Wiesinger H. and Hamprecht B. (1993b) Uptake of l-lactate by cultured rat brain neurons. Neurosci. Lett. 163, 57.
  • Dubouchaud H., Butterfield G. E., Wolfel E. E., Bergman B. C. and Brooks G. A. (2000) Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am. J. Physiol. 278, E571E579.
  • Edmond J., Auestad N., Robbins R. A. and Bergstrom J. D. (1985) Ketone body metabolism in the neonate: development and the effect of diet. Fed. Proc. 44, 23592364.
  • Enerson B. E. and Drewes L. R. (1999) Multiple splice variants of monocarboxylate transporter MCT4. FASEB J. 12, A1403.
  • Enerson B. E. and Drewes L. R. (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92, 15311544.
  • Erecinska M., Cherian S. and Silver I. A. (2004) Energy metabolism in mammalian brain during development. Prog. Neurobiol. 73, 397445.
  • Fernandes J., Berger R. and Smit G. P. (1982) Lactate as energy source for brain in glucose-6-phosphatase deficient child. Lancet 1, 113.
  • Fernandez E. and Medina J. M. (1986) Lactate utilization by the neonatal rat brain in vitro. Competition with glucose and 3-hydroxybutyrate. Biochem. J. 234, 489492.
  • Frerichs K. U., Lindsberg P. J., Hallenbeck J. M. and Feuerstein G. Z. (1990) Increased cerebral lactate output to cerebral venous blood after forebrain ischemia in rats. Stroke 21, 614617.
  • Friesema E. C., Ganguly S., Abdalla A., Manning Fox J. E., Halestrap A. P. and Visser T. J. (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem. 278, 40 12840 135.
  • Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G. and Brown M. S. (1994 ) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76, 865873.
  • Garcia C. K., Brown M. S., Pathak R. K. and Goldstein J. L. (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J. Biol. Chem. 270, 18431849.
  • Gerhart D. Z., Enerson B. E., Zhdankina O. Y., Leino R. L. and Drewes L. R. (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am. J. Physiol. 273, E207E213.
  • Gerhart D. Z., Enerson B. E., Zhdankina O. Y., Leino R. L. and Drewes L. R. (1998) Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22, 272281.
  • Gjedde A. and Crone C. (1975) Induction processes in blood-brain transfer of ketone bodies during starvation. Am. J. Physiol. 229, 11651169.
  • Gladden L. B. (2004) Lactate metabolism: a new paradigm for the third millennium. J. Physiol. 558, 530.
  • Grollman E. F., Philp N. J., McPhie P., Ward R. D. and Sauer B. (2000) Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry 39, 93519357.
  • Halestrap A. P. and Denton R. M. (1975) The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds. Biochem. J. 148, 97106.
  • Halestrap A. P. and Meredith D. (2004) The SLC16 gene family – from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447, 619628.
  • Halestrap A. P. and Price N. T. (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343, 281299.
  • Hanu R., McKenna M., O'Neill A., Resneck W. G. and Bloch R. J. (2000) Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am. J. Physiol. 278, C921C930.
  • Hassel B. and Brathe A. (2000) Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J. Cereb. Blood Flow Metab. 20, 327336.
  • Hawkins R. A., Williamson D. H. and Krebs H. A. (1971) Ketone-body utilization by adult and suckling rat brain in vivo. Biochem. J. 122, 1318.
  • Hawkins R. A., Mans A. M. and Davis D. W. (1986) Regional ketone body utilization by rat brain in starvation and diabetes. Am. J. Physiol. 250, E169E178.
  • Himmi T., Perrin J., Dallaporta M. and Orsini J. C. (2001) Effects of lactate on glucose-sensing neurons in the solitary tract nucleus. Physiol. Behav. 74, 391397.
  • Honegger P., Braissant O., Henry H., Boulat O., Bachmann C., Zurich M. G. and Pardo B. (2002) Alteration of amino acid metabolism in neuronal aggregate cultures exposed to hypoglycaemic conditions. J. Neurochem. 81, 11411151.
  • Ide T., Steinke J. and Cahill G. F. Jr (1969) Metabolic interactions of glucose, lactate, and beta-hydroxybutyrate in rat brain slices. Am. J. Physiol. 217, 784792.
  • Ide K., Horn A. and Secher N. H. (1999) Cerebral metabolic response to submaximal exercise. J. Appl. Physiol. 87, 16041608.
  • Ide K., Schmalbruch I. K., Quistorff B., Horn A. and Secher N. H. (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J. Physiol. 522, 159164.
  • Inao S., Marmarou A., Clarke G. D., Andersen B. J., Fatouros P. P. and Young H. F. (1988) Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J. Neurosurg. 69, 736744.
  • Itoh Y., Esaki T., Shimoji K., Cook M., Law M. J., Kaufman E. and Sokoloff L. (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc. Natl Acad. Sci. USA 100, 48794884.
  • Izumi Y., Benz A. M., Katzuki H. and Zorumski C. F. (1997) Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation. J. Neurosci. 17, 94489457.
  • Jackson V. N., Price N. T., Carpenter L. and Halestrap A. P. (1997) Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem. J. 324, 447453.
  • Juel C. (1996) Symmetry and pH dependency of the lactate/proton carrier in skeletal muscle studied with rat sarcolemmal giant vesicles. Biochim. Biophys. Acta 1283, 106110.
  • Juel C. and Halestrap A. P. (1999) Lactate transport in skeletal muscle – role and regulation of the monocarboxylate transporter. J. Physiol. 517, 633642.
  • Kang L., Routh V. H., Kuzhikandathil E. V., Gaspers L. D. and Levin B. E. (2004) Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 53, 549559.
  • Kasischke K. A., Vishwasrao H. D., Fisher P. J., Zipfel W. R. and Webb W. W. (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99103.
  • Kirk P., Wison M. C., Heddle C., Brown M. H., Barclay A. and Halestrap A. P. (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19, 38963904.
  • Koehler-Stec E. M., Simpson I. A., Vannucci S. J., Landschulz K. T. and Landschulz W. H. (1998) Monocarboxylate transporter expression in mouse brain. Am. J. Physiol. 275, E516E524.
  • Kuhr W. G., Van Den Berg C. J. and Korf J. (1988) In vivo identification and quantitative evaluation of carrier-mediated transport of lactate at the cellular level in the striatum of conscious, freely moving rats. J. Cereb. Blood Flow Metab. 8, 848856.
  • Larrabee M. G. (1983) Lactate uptake and release in the presence of glucose by sympathetic ganglia of chicken embryos and by neuronal and nonneuronal cultures prepared from these ganglia. J. Neurochem. 40, 12371250.
  • Larrabee M. G. (1992) Extracellular intermediates of glucose metabolism: fluxes of endogenous lactate and alanine through extracellular pools in embryonic sympathetic ganglia. J. Neurochem. 59, 10411052.
  • Larrabee M. G. (1995) Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J. Neurochem. 64, 17341741.
  • Larrabee M. G. (1996) Partitioning of CO2 production between glucose and lactate in excised sympathetic ganglia, with implications for brain. J. Neurochem. 67, 17261734.
  • Leino R. L. and Gerhart D. Z. and. Drewes L. R. (1999) Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res. 113, 4754.
  • Leino R. L., Gerhart D. Z., Duelli R., Enerson B. E. and Drewes L. R. (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem. Int. 38, 519527.
  • Lin R. Y., Vera J. C., Chaganti R. S. and Golde D. W. (1998) Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J. Biol. Chem. 273, 2895928965.
  • Mac M. and Nalecz K. A. (2003) Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons. Neurochem. Int. 43, 305309.
  • Magistretti P. J., Sorg O., Yu N., Martin J. L. and Pellerin L. (1993) Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev. Neurosci. 15, 306312.
  • Manning Fox J. E., Meredith D. and Halestrap A. P. (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J. Physiol. 529, 285293.
  • McKenna M. C., Tildon J. T., Stevenson J. H., Boatright R. and Huang S. (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev. Neurosci. 15, 320329.
  • McKenna M. C., Tildon J. T., Stevenson J. H. and Hopkins I. B. (1994) Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev. Neurosci. 16, 291300.
  • McKenna M. C., Tildon J. T., Stevenson J. H., Hopkins I. B., Huang X. and Couto R. (1998) Lactate transport by cortical synaptosomes from adult rat brain: characterization of kinetics and inhibitor specificity. Dev. Neurosci. 20, 300309.
  • McKenna M. C., Hopkins I. B. and Carey A. (2001) Alpha-cyano-4-hydroxycinnamate decreases both glucose and lactate metabolism in neurons and astrocytes: implications for lactate as an energy substrate for neurons. J. Neurosci. Res. 66, 747754.
  • Miyamoto S., Chiorini J. A., Urcelay E. and Safer B. (1996) Regulation of gene expression for translation initiation factor eIF-2 alpha: importance of the 3′ untranslated region. Biochem. J. 315, 791798.
  • Mobbs C. V., Kow L. M. and Yang X. J. (2001) Brain glucose-sensing mechanisms: ubiquitous silencing by aglycemia vs. hypothalamic neuroendocrine responses. Am. J. Physiol. 281, E649E654.
  • Nedergaard M. and Goldman S. A. (1993) Carrier-mediated transport of lactic acid in cultured neurons and astrocytes. Am. J. Physiol. 265, R282R289.
  • Nehlig A. (1997) Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia. Diabetes Metab. 23, 1829.
  • Nehlig A. and Pereira de Vasconcelos A. (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog. Neurobiol. 40, 163221.
  • Nehlig A., Boyet S. and Pereira de Vasconcelos A. (1991) Autoradiographic measurement of local cerebral beta-hydroxybutyrate uptake in the rat during postnatal development. Neuroscience 40, 871878.
  • Nybo L. and Secher N. H. (2004) Cerebral perturbations provoked by prolonged exercise. Prog. Neurobiol. 72, 223261.
  • Pellerin L. (2003) Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochem. Int. 43, 331338.
  • Pellerin L. and Magistretti P. J. (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10 62510 629.
  • Pellerin L. and Magistretti P. J. (2003) Food for thought: challenging the dogmas. J. Cereb. Blood Flow Metab. 23, 12821286.
  • Pellerin L. and Magistretti P. J. (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10, 5362.
  • Pellerin L., Pellegri G., Martin J. L. and Magistretti P. J. (1998a) Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc. Natl Acad. Sci. USA 95, 39903995.
  • Pellerin L., Pellegri G., Bittar P. G., Charnay Y., Bouras C., Martin J. L., Stella N. and Magistretti P. J. (1998b) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev. Neurosci. 20, 291299.
  • Pellerin L., Bergersen L. H., Halestrap A. P. and Pierre K. (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J. Neurosci. Res. 79, 5564.
  • Peters A., Schweiger U., Pellerin L., Hubold C., Oltmanns K. M., Conrad M., Schultes B., Born J. and Fehm H. L. (2004) The selfish brain: competition for energy resources. Neurosci. Biobehav. Rev. 28, 143180.
  • Philp N. J., Yoon H. and Grollman E. F. (1998) Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am. J. Physiol. 274, R1824R1828.
  • Philp N. J., Yoon H. and Lombardi L. (2001) Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am. J. Physiol. 280, C1319C1326.
  • Philp N. J., Ochreitor J. D., Rudoy C., Muramatsu T. and Linser P. J. (2003) Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest. Ophthalmol. Vis. Sci. 44, 13051311.
  • Pierre K., Pellerin L., Debernardi R., Riederer B. M. and Magistretti P. J. (2000) Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100, 617627.
  • Pierre K., Magistretti P. J. and Pellerin L. (2002) MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J. Cereb. Blood Flow Metab. 22, 586595.
  • Pierre K., Debernardi R., Magistretti P. J. and Pellerin L. (2003) Noradrenaline enhances monocarboxylate transporter 2 expression in cultured mouse cortical neurons via a translational regulation. J. Neurochem. 86, 14681476.
  • Pilegaard H., Terzis G., Halestrap A. P. and Juel C. (1999) Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. Am. J. Physiol. 276, E843E848.
  • Pollay M. and Stevens F. A. (1980) Starvation-induced changes in transport of ketone bodies across the blood–brain barrier. J. Neurosci. Res. 5, 163172.
  • Poole R. C. and. Halestrap A. P. (1992) Identification and partial purification of the erythrocyte l-lactate transporter. Biochem. J. 283, 855862.
  • Poole R. C. and Halestrap A. P. (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264, C761C782.
  • Poole R. C. and Halestrap A. P. (1997) Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily. J. Biol. Chem. 272, 14 62414 628.
  • Price N. T., Jackson V. N. and Halestrap A. P. (1998) Cloning and sequencing of four new mammalian monocarboxylate transporters (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem. J. 329, 321328.
  • Qu H., Haberg A., Haraldseth O., Unsgard G. and Sonnewald U. (2000) (13)C MR spectroscopy study of lactate as substrate for rat brain. Dev. Neurosci. 22, 429436.
  • Rafiki A., Boulland J. L., Halestrap A. P., Ottersen O. P. and Bergersen L. (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122, 677688.
  • Ros J., Pecinska N., Alessandri B., Landolt H. and Fillenz M. (2001) Lactate reduces glutamate-induced neurotoxicity in rat cortex. J. Neurosci. Res. 66, 790794.
  • Sakurai T., Yang B., Takata T. and Yokono K. (2002) Synaptic adaptation to repeated hypoglycemia depends on the utilization of monocarboxylates in Guinea pig hippocampal slices. Diabetes 51, 430438.
  • Sapolsky R. M. (2003) Neuroprotective gene therapy against acute neurological insults. Nat. Rev. Neurosci. 4, 6169.
  • Schurr A., West C. A. and Rigor B. M. (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240, 13261328.
  • Schurr A., Payne R. S., Tseng M. T., Miller J. J. and Rigor B. M. (1999) The glucose paradox in cerebral ischemia. New insights. Ann. N. Y. Acad. Sci. 893, 386390.
  • Schurr A., Payne R. S., Miller J. J., Tseng M. T. and Rigor B. M. (2001) Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia. Brain Res. 895, 268272.
  • Smith D., Pernet A., Hallett W. A., Bingham E., Marsden P. K. and Amiel S. A. (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J. Cereb. Blood Flow Metab. 23, 658664.
  • Song Z. and Routh V. H. (2005) Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 54, 1522.
  • Tabernero A., Vicario C. and Medina J. M. (1996) Lactate spares glucose as a metabolic fuel in neurons and astrocytes from primary culture. Neurosci. Res. 26, 369376.
  • Takanaga H., Tamai I., Inaba S., Sai Y., Higashida H., Yamamoto H. and Tsuji A. (1995) cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem. Biophys. Res. Commun. 217, 370377.
  • Takata T., Sakurai T., Yang B., Yokono K. and Okada Y. (2001) Effect of lactate on the synaptic potential, energy metabolism, calcium homeostasis and extracellular glutamate concentration in the dentate gyrus of the hippocampus from guinea-pig. Neuroscience 104, 371378.
  • Tamai I., Takanaga H., Maeda H., Sai Y., Ogihara T., Higashida H. and Tsuji A. (1995) Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem. Biophys. Res. Commun. 214, 482489.
  • Terasaki T., Takakuwa S., Moritani S. and Tsuji A. (1991) Transport of monocarboxylic acids at the blood–brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. J. Pharmacol. Exp. Ther. 258, 932937.
  • Tildon J. T. and Roeder L. M. (1988) Transport of 3-hydroxy[3–14C]butyrate by dissociated cells from rat brain. Am. J. Physiol. 255, C133C139.
  • Tildon J. T., McKenna M. C., Stevenson J. and Couto R. (1993) Transport of l-lactate by cultured rat brain astrocytes. Neurochem. Res. 18, 177184.
  • Tildon J. T., McKenna M. C. and Stevenson J. H. Jr (1994) Transport of 3-hydroxybutyrate by cultured rat brain astrocytes. Neurochem. Res. 19, 12371242.
  • Tseng M. T., Chan S. A. and Schurr A. (2003) Ischemia-induced changes in monocarboxylate transporter 1 reactive cells in rat hippocampus. Neurol. Res. 25, 8386.
  • Vannucci S. J. and Simpson I. A. (2003) Developmental switch in brain nutrient transporter expression in the rat. Am. J. Physiol. 285, E1127E1134.
  • Vicario C., Arizmendi C., Malloch G., Clark J. B. and Medina J. M. (1991) Lactate utilization by isolated cells from early neonatal rat brain. J. Neurochem. 57, 17001707.
  • Waagepetersen H. S., Bakken I. J., Larsson O. M., Sonnewald U. and Schousboe A. (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy. Dev. Neurosci. 20, 310320.
  • Walz W. and Mukerji S. (1988a) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1, 366370.
  • Walz W. and Mukerji S. (1988b) Lactate production and release in cultured astrocytes. Neurosci. Lett. 86, 296300.
  • Waniewski R. A. and Martin D. L. (2004) Astrocytes and synaptosomes transport and metabolize lactate and acetate differently. Neurochem. Res. 29, 209217.
  • Wilson M. C., Jackson V. N., Heddle C., Price N. T., Pilegaard H., Juel C., Bonen A., Montgomery I., Hutter O. F. and Halestrap A. P. (1998) Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J. Biol. Chem. 273, 15 92015 926.
  • Xang X. J., Kow L. M., Funabashi T. and Mobbs C. V. (1999) Hypothalamic glucose sensor: similarities to and differences from pancreatic β-cell mechanisms. Diabetes 48, 17631772.
  • Yoon H., Fanelli A., Grollman E. F. and Philp N. J. (1997) Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 234, 9094.
  • Zhao C., Wilson M. C., Schuit F., Halestrap A. P. and Rutter G. A. (2001) Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50, 361366.