SEARCH

SEARCH BY CITATION

References

  • Alagarsamy S., Marino M. J., Rouse S. T., Gereau R. W. IV, Heinemann S. F. and Conn P. J. (1999) Activation of NMDA receptors reverses desensitization of mGlu5R in native and recombinant systems. Nat. Neurosci. 2, 234240.
  • Anderson W. W. and Collingridge G. L. (2001) The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Methods 108, 7183.
  • Anwyl R. (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Rev. 29, 83120.
  • Attucci S., Carlà V., Mannaioni G. and Moroni F. (2001) Activation of type 5 metabotropic receptors enhances NMDA responses in cortical wedges. Br. J. Pharmacol. 132, 799806.
  • Attucci S., Clodfelter G. V., Thibault O., Staton J., Moroni F., Landfield P. W. and Porter N. M. (2002) Group I metabotropic glutamate receptor inhibition selectively blocks a prolonged Ca2+ elevation associated with age-dependent excitotoxicity. Neuroscience 112, 183194.
  • Balschun D. and Wetzel W. (2002) Inhibition of mGlu5R blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol. Biochem. Behav. 73, 375380.
  • Balschun D., Manahan-Vaughan D., Wagner T., Behnisch T., Reymann K. G. and Wetzel W. (1999) A specific role for group I mGluRs in hippocampal LTP and hippocampus-dependent spatial learning. Learn. Mem. 6, 138152.
  • Battaglia G., Bruno V., Pisani A., Centonze D., Catania M. V., Calabresi P. and Nicoletti F. (2001) Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol. Cell. Neurosci. 17, 10711083.
  • Benquet P., Gee C. E. and Gerber U. (2002) Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J. Neurosci. 22, 96799686.
  • Bortolotto Z. A., Fitzjohn S. M. and Collingridge G. L. (1999) Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr. Opin. Neurobiol. 9, 299304.
  • Chen J. F., Huang Z., Ma J., Zhu J., Moratalla R., Standaert D., Moskowitz M. A., Fink J. S. and Schwarzschild M. A. (1999) A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J. Neurosci. 19, 91929200.
  • Chen J. F., Xu K., Petzer J. P., Staal R., Xu Y. H., Beilstein M., Sonsalla P. K., Castagnoli K., Castagnoli N. and Jr And Schwarzschild M. A. (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson's disease. J Neurosci. 21, RC 143.
  • Coccurello R., Breysse N. and Amalric M. (2004) Simultaneous blockade of adenosine A2A and metaboptropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 29, 14511461.
  • Collingridge G. L. and Bliss T. V. (1995) Memories of NMDA receptors and LTP. Trends Neurosci. 18, 5456.
  • Cunha R. A. (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signalling 1, 111134.
  • Cunha R. A., Constantino M. D. and Ribeiro J. A. (1997) ZM241385 is an antagonist of the facilitatory responses produced by the A2A adenosine receptor agonists CGS21680 and HENECA in the rat hippocampus. Br. J. Pharmacol. 122, 12791284.
  • Cunha R. A. and Ribeiro J. A. (2000a) Purinergic modulation of [3H]GABA release from rat hippocampal nerve terminals. Neuropharmacology 39, 11561167.
  • Cunha R. A. and Ribeiro J. A. (2000b) Adenosine A2A facilitation of synaptic transmission in the CA1 area of the rat hippocampus requires protein kinase C but not protein kinase A activation. Neurosci. Lett. 289, 127130.
  • Diaz-Cabiale Z., Vivò M., Del Arco A., O'Connor W. T., Harte M. K., Müller C. E., Martinez E., Popoli P., Fuxe K. and Ferré S. (2002) Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats: interactions with adenosine A2A and dopamine D2 receptors. Neurosci. Lett. 324, 154158.
  • Doherty A. J., Palmer M. J., Henley J. M., Collingridge G. L. and Jane D. E. (1997) (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in hippocampus. Neuropharmacology 36, 265267.
  • Domenici M. R., Pepponi R., Martire A., Tebano M. T., Potenza R. L. and Popoli P. (2004) Permissive role of adenosine A2A receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum. J. Neurochem. 90, 12761279.
  • Fazal A., Parker F., Palmer A. M. and Croucher M. J. (2003) Characterisation of the actions of group I metabotropic glutamate receptor subtype selective ligands on excitatory amino acid release and sodium-dependent re-uptake in rat cerebrocortical minislices. J. Neurochem. 86, 13461358.
  • Ferré S., Karcz-Kubicha M., Hope B. et al. (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl Acad. Sci. USA 99, 11 94011 945.
  • Fitzjohn S. M., Irving A. J., Palmer M. J., Harvey J., Lodge D. and Collingridge G. L. (1996) Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci. Lett. 203, 211213.
  • Fredholm B. B., Cunha R. A. and Svenningsson P. (2003) Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 3, 413426.
  • Fuxe K., Agnati L. F., Jacobsen J. et al. (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease. Neurology 61, S19S23.
  • Kotecha S. A., Jackson M. F., Al-Mahrouki A., Roder J. C., Orser B. A. and MacDonald J. F. (2003) Co-stimulation of mGluR5 and N-methyl-d-aspartate receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons. J. Biol. Chem. 278, 27 74227 749.
  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • Li H. and Henry J. L. (1998) Adenosine A2 receptor mediation of pre- and postsynaptic excitatory effects of adenosine in rat hippocampus in vitro. Eur. J. Pharmacol. 347, 173182.
  • Lopes L. V., Cunha R. A., Kull B., Fredholm B. B. and Ribeiro J. A. (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112, 319329.
  • Lu Y. M., Jia Z., Janus C., Henderson J. T., Gerlai R., Wojtowicz M. J. and Roder J. C. (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J. Neurosci. 17, 51965205.
  • Lujan R., Nusser Z., Roberts J. D., Shigemoto R. and Somogyi P. (1996) Perisynaptic location of metabotropic glutamate receptors mGlu1R and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 14881500.
  • Lujan R., Roberts J. D., Shigemoto R., Ohishi H. and Somogyi P. (1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat. 13, 219241.
  • Mannaioni G., Marino M. J., Valemnti O., Traynelis S. F. and Conn J. P. (2001) Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J. Neurosci. 21, 59255934.
  • Marchi M., Raiteri L., Risso F., Vallarino A., Bonfanti A., Monopoli A., Ongini E. and Raiteri M. (2002) Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br. J. Pharmacol. 136, 434440.
  • Mori M. and Gerber U. (2002) Slow feedback inhibition in the CA3 area of the rat hippocampus by synergistic synaptic activation of mGluR1 and mGluR5. J. Physiol. 544, 793799.
  • Nikbakht M. R. and Stone T. W. (2001) Suppression of presynaptic responses to adenosine by activation of NMDA receptors. Eur. J. Pharmacol. 427, 1325.
  • Nishi A., Liu F., Matsuyama S., Hamada M., Higashi H., Nairn A. C. and Greengard P. (2003) Metabotropic mGlu5 receptors regulate adenosine A2A receptor signalling. Proc. Natl Acad. Sci. USA 100, 13221327.
  • O'Kane E. M. and Stone T. W. (1998) Interaction between adenosine A1 and A2 receptor-mediated responses in the rat hippocampus in vitro. Eur. J. Pharmacol. 362, 1725.
  • Okada M., Nutt D. J., Murakami T., Zhu G., Kamata A., Kawata Y. and Kaneko S. (2001) Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J. Neurosci. 21, 628640.
  • Phillips G. R., Huang J. K., Wang Y., Tanaka H., Shapiro L., Zhang M., Gordon R. E., Gawinowicz M. A., Zhao Y. and Colman D. R. (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32, 120.
  • Pisani A., Gubellini P., Bonsi P., Conquet F., Picconi B., Centonze D., Bernardi G. and Calabresi P. (2001) Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-d-aspartate responses in medium spiny striatal neurons. Neuroscience 106, 579587.
  • Popoli P., Pèzzola A., Torvinen M., Reggio R., Pintor A., Scarchilli L., Fuxe K. and Ferré S. (2001) The selective mGlu5 receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D2 receptors in the striatum: interaction with adenosine A2A receptors. Neuropsychopharmacology 25, 505513.
  • Popoli P., Pintor A., Domenici M. R. et al. (2002) Blockade of sriatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possibile relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J. Neurosci. 22, 19671975.
  • Popoli P., Pintor A., Tebano M. T. et al. (2004) Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acid-induced striatal toxicity: involvment of pre and post-synaptic mechanisms and lack of direct NMDA blocking activity. J. Neurochem. 89, 14791489.
  • Rebola N., Oliveira C. R. and Cunha R. A. (2002) Transducing system operated by adenosine A2A receptors to facilitate acetylcholine release in the rat hippocampus. Eur. J. Pharmacol. 454, 3138.
  • Rebola N., Pinheiro P. C., Oliveira C. R., Malva J. O. and Cunha R. A. (2003) Subcellular localization of adenosine A1 receptors in nerve terminals and synapses of the rat hippocampus. Brain Res. 987, 4958.
  • Rebola N., Canas P., Oliveira C. R. and Cunha R. A. (2005) Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132, 893903.
  • Rodrigues R. J., Alfaro T. M., Rebola N., Oliveira C. R. and Cunha R. A. (2005) Co-localization and functional interaction between adenosine A2A and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J. Neurochem. 92, 433441.
  • Romano C., Sesma M. A., McDonald C. T., O'Malley K., Van Den Pol A. N. and Olney J. W. (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 355, 455469.
  • Rothman S. M. and Olney J. W. (1995) Excitotoxicity and the NMDA receptor – still lethal after eight years. Trends Neurosci. 18, 5758.
  • Sacaan A. I. and Schoepp D. D. (1992) Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci. Lett. 139, 7782.
  • Schulz P. E., Cook E. P. and Johnston D. (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J. Neurosci. 14, 53255337.
  • Sebastião A. M. and Ribeiro J. A. (2000) Fine-tuning neuromodulation by adenosine. Trends Pharmacol. Sci. 21, 341346.
  • Shigemoto R., Kinoshita A., Wada E. et al. (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 75037522.
  • Ugolini A., Corsi M. and Bordi F. (1999) Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons. Neuropharmacology 38, 15691576.
  • Wang S. J. and Sihra T. S. (2004) Noncompetitive metabotropic glutamate5 receptor antagonist (E)-2-methyl-6-styryl-pyridine (SIB1893) depresses glutamate release through inhibition of voltage-dependent Ca2+ entry in rat cerebrocortical nerve terminals (synaptosomes). J. Pharmacol. Exp. Ther. 309, 951958.