SEARCH

SEARCH BY CITATION

References

  • Beher D., Fricker M., Nadin A., Clarke E. E., Wrigley J. D., Li Y. M., Culvenor J. G., Masters C. L., Harrison T. and Shearman M. S. (2003) In vitro characterization of the presenilin-dependent γ-secretase complex using a novel affinity ligand. Biochemistry 42, 81338142.
  • Brunkan A. L., Martinez M., Wang J., Walker E. S. and Goate A. M. (2005a) A domain at the C-terminus of PS1 is required for presenilinase and γ-secretase activities. J. Neurochem. 92, 11581169.
  • Brunkan A. L., Martinez M., Wang J., Walker E. S., Beher D., Shearman M. S. and Goate A. M. (2005b) Two domains within the first putative transmembrane domain of presenilin 1 differentially influence presenilinase and γ-secretase activity. J. Neurochem. 94, 13151328.
  • Cai X. D., Golde T. E. and Younkin S. G. (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514516.
  • DeMattos R. B., Bales K. R., Cummins D. J., Dodart J. C., Paul S. M. and Holtzman D. M. (2001) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 88508855.
  • Devi G., Fotiou A., Jyrinji D. et al. (2000) Novel presenilin 1 mutations associated with early onset of dementia in a family with both early-onset and late-onset Alzheimer disease. Arch. Neurol. 57, 14541457.
  • Dewji N. N., Valdez D. and Singer S. J. (2004) The presenilins turned inside out: implications for their structures and functions. Proc. Natl Acad. Sci. USA 101, 10571062.
  • Esler W. P., Kimberly W. T., Ostaszewski B. L. YeW., Diehl T. S., Selkoe D. J. and Wolfe M. S. (2002) Activity-dependent isolation of the presenilin- γ-secretase complex reveals nicastrin and a γ substrate. Proc. Natl. Acad. Sci. USA 99, 27202725.
  • Evin G., Sharples R. A., Weidemann A., Reinhard F. B., Carbone V., Culvenor J. G., Holsinger R. M., Sernee M. F., Beyreuther K. and Masters C. L. (2001) Aspartyl protease inhibitor pepstatin binds to the presenilins of Alzheimer's disease. Biochemistry 40, 83598368.
  • Francis R., McGrath G., Zhang J. et al. (2002) aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell 3, 8597.
  • Friedmann E., Lemberg M. K., Weihofen A., Dev K. K., Dengler U., Rovelli G. and Martoglio B. (2004) Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins. J. Biol. Chem. 279, 5079050798.
  • Goutte C., Tsunozaki M., Hale V. A. and Priess J. R. (2002) APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. USA 99, 775779.
  • Grigorenko A. P., Moliaka Y. K., Korovaitseva G. I. and Rogaev E. I. (2002) Novel class of polytopic proteins with domains associated with putative protease activity. Biochemistry Mosc. 67, 826835.
  • Henricson A., Kall L. and Sonnhammer E. L. (2005) A novel transmembrane topology of presenilin based on reconciling experimental and computational evidence. FEBS J. 272, 27272733.
  • Johnson-Wood K., Lee M., Motter R. et al. (1997) Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl. Acad. Sci. USA 94, 15501555.
  • Kaether C., Capell A., Edbauer D., Winkler E., Novak B., Steiner H. and Haass C. (2004) The presenilin C-terminus is required for ER-retention, nicastrin-binding and γ-secretase activity. EMBO J. 23, 47384748.
  • Laudon H., Hansson E. M., Melen K., Bergman A., Farmery M. R., Winblad B., Lendahl U., Von Heijne G. and Naslund J. (2005) A nine transmembrane domain topology for presenilin 1. J. Biol. Chem. 280, 35 35235 360.
  • Lehmann S., Chiesa R. and Harris D. A. (1997) Evidence for a six-transmembrane domain structure of presenilin 1. J. Biol. Chem. 272, 12 04712 051.
  • Lemberg M. K. and Martoglio B. (2002) Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol. Cell 10, 735744.
  • Li X. and Greenwald I. (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17, 10151021.
  • Li Y. M., Xu M., Lai M. T. et al. (2000) Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689694.
  • Martoglio B. and Golde T. E. (2003) Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs. Hum. Mol. Genet. 12, R201R206.
  • Nakai T., Yamasaki A., Sakaguchi M., Kosaka K., Mihara K., Amaya Y. and Miura S. (1999) Membrane topology of Alzheimer's disease-related presenilin 1. Evidence for the existence of a molecular species with a seven membrane-spanning and one membrane-embedded structure. J. Biol. Chem. 274, 23 64723 658.
  • Nakaya Y., Yamane T., Shiraishi H. et al. (2005) Random mutagenesis of presenilin-1 identifies novel mutants exclusively generating long amyloid β-peptides. J. Biol. Chem. 280, 19 07019 077.
  • Nyborg A. C., Jansen K., Ladd T. B., Fauq A. and Golde T. E. (2004a) A signal peptide peptidase (SPP) reporter activity assay based on the cleavage of type II membrane protein substrates provides further evidence for an inverted orientation of the SPP active site relative to presenilin. J. Biol. Chem. 279, 43 14843 156.
  • Nyborg A. C., Kornilova A. Y., Jansen K., Ladd T. B., Wolfe M. S. and Golde T. E. (2004b) Signal peptide peptidase forms a homodimer that is labeled by an active site-directed γ-secretase inhibitor. J. Biol. Chem. 279, 15 15315 160.
  • Oh Y. S. and Turner R. J. (2005) Evidence that the COOH terminus of human presenilin 1 is located in extracytoplasmic space. Am. J. Physiol. Cell Physiol. 289, C576C581.
  • Perez-Tur J., Froelich S., Prihar G. et al. (1995) A mutation in Alzheimer's disease destroying a splice acceptor site in the presenilin-1 gene. Neuroreport 7, 297301.
  • Ponting C. P., Hutton M., Nyborg A., Baker M., Jansen K. and Golde T. E. (2002) Identification of a novel family of presenilin homologues. Hum. Mol. Genet. 11, 10371044.
  • Rogaeva E. A., Fafel K. C., Song Y. Q. et al. (2001) Screening for PS1 mutations in a referral-based series of AD cases: 21 novel mutations. Neurology 57, 621625.
  • Shearman M. S., Beher D., Clarke E. E. et al. (2000) L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor γ-secretase activity. Biochemistry 39, 86988704.
  • Tomita T., Watabiki T., Takikawa R., Morohashi Y., Takasugi N., Kopan R., De Strooper B. and Iwatsubo T. (2001) The first proline of PALP motif at the C terminus of presenilins is obligatory for stabilization, complex formation, and γ-secretase activities of presenilins. J. Biol. Chem. 276, 33 27333 281.
  • Walker E. S., Martinez M., Brunkan A. L. and Goate A. (2005) Presenilin 2 familial Alzheimer's disease mutations result in partial loss of function and dramatic changes in Aβ 42/40 ratios. J. Neurochem. 92, 294301.
  • Wang Y., Shen J., Arenzana N., Tirasophon W., Kaufman R. J. and Prywes R. (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 27 01327 020.
  • Wang J., Brunkan A. L., Hecimovic S., Walker E. and Goate A. (2004) Conserved ‘PAL’ sequence in presenilins is essential for γ-secretase activity, but not required for formation or stabilization of γ-secretase complexes. Neurobiol. Dis. 15, 654666.
  • Weihofen A., Binns K., Lemberg M. K., Ashman K. and Martoglio B. (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 22152218.
  • Weihofen A., Lemberg M. K., Friedmann E., Rueeger H., Schmitz A., Paganetti P., Rovelli G. and Martoglio B. (2003) Targeting presenilin-type aspartic protease signal peptide peptidase with γ-secretase inhibitors. J. Biol. Chem. 278, 16 52816 533.
  • Wolfe M. S., Xia W., Ostaszewski B. L., Diehl T. S., Kimberly W. T. and Selkoe D. J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513517.
  • Wrigley J. D., Nunn E. J., Nyabi O., Clarke E. E., Hunt P., Nadin A., De Strooper B., Shearman M. S. and Beher D. (2004) Conserved residues within the putative active site of γ-secretase differentially influence enzyme activity and inhibitor binding. J. Neurochem. 90, 13121320.
  • Yu G., Nishimura M., Arawaka S. et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407, 4854.