SEARCH

SEARCH BY CITATION

References

  • Aronson A. L. (1980) Pharmacotherapeutics of the newer tetracyclines. J. Am. Vet. Med. Assoc. 76, 10611068.
  • Asanuma M., Tsuji T., Miyazaki I., Miyoshi K. and Ogawa N. (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neurosci. Lett. 352, 1316.
  • Banati R. B., Daniel S. F. and Blunt S. B. (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov. Disord. 13, 221.
  • Bauer J., Strauss S., Schreiter-Gasser U., Ganter U., Schlegel P., Witt I., Yolk B. and Berger M. (1991) Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Lett. 285, 111114.
  • Boje K. M. and Arora P. K. (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587, 250256.
  • Boka G., Anglade P., Wallach D., Javoy-Agid F., Agid Y. and Hirsch E. C. (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neurosci. Lett. 172, 151154.
  • Borit A., Rubinstein L. J. and Urich H. (1975) The striatonigral degenerations. Putaminal pigments and nosology. Brain 98, 101112.
  • Botchkina G. I., Meistrell M. E. III, Botchkina I. L. and Tracey K. J. (1997) Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol. Med. 3, 765781.
  • Bradbury A. J., Costall B., Jenner P. G., Kelly M. E., Marsden C. D. and Naylor R. J. (1986) MPP+ can disrupt the nigrostriatal dopamine system by acting in the terminal area. Neuropharmacology 25, 939941.
  • Bruce-Keller A. J., Keeling J. L., Keller J. N., Huang F. F., Camondola S. and Mattson M. P. (2000) Antiinflammatory effects of estrogen on microglial activation. Endocrinology 141, 36463656.
  • Calabresi P., Centonze D. and Bernardi G. (2000) Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci. 10, S57S63.
  • Colton C. A. and Gilbert D. L. (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 223, 284288.
  • Czlonkowska A., Kohutnicka M., Kurkowska-Jastrzebska I. and Czlonkowski A. (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration 5, 137143.
  • De Bock F., Dornand J. and Rondouin G. (1996) Release of TNF alpha in the rat hippocampus following epileptic seizures and excitotoxic neuronal damage. Neuroreport 7, 11251129.
  • De Simone R., Giampaolo A., Giometto B., Gallo P., Levi G., Peschle C. and Aloisi F. (1995) The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions,. J. Neuropathol. Exp. Neurol. 54, 175187.
  • Dehmer T., Lindenau J., Haid S., Dichgans J. and SchulZ. J. B. (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem. 74, 22132216.
  • Di Monte D. A., Wu E. Y., Delanney L. E., Irwin I. and Langston J. W. (1992) Toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in primary cultures of mouse astrocytes. J. Pharmacol. Exp. Ther. 261, 4449.
  • Diguet E., Fernagut P. O., Du Wei X. Y., Rouland R., Gross C., Bezard E. and Tison F. (2004) Deleterious effects of minocycline in animal models of Parkinson's disease and Huntington's disease. Eur. J. Neurosci. 19, 32663276.
  • Du Y., Ma Z., Lin S. et al. (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 14 66914 674.
  • Feng Z., Li D., Fung P. C., Pei Z., Ramsden D. B. and Ho S. L. (2003) COX-2-deficient mice are less prone to MPTP-neurotoxicity than wild-type mice. Neuroreport 14, 19271929.
  • Ferger B., Leng A., Mura A., Hengerer B. and Feldon J. (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem. 89, 822833.
  • Fiedorowicz A., Figiel I., Kaminska B., Zaremba M., Wilk S. and Oderfeld-Nowak B. (2001) Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure. Brain Res. 912, 116127.
  • Francis J. W., Von Visger J., Markelonis G. J. and Oh T. H. (1995) Neuroglial responses to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse striatum,. Neurotoxicol. Teratol. 17, 712.
  • Gonzalez-Scarano F. and Baltuch G. (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219240.
  • He Y., Appel S. and Le W. (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res. 909, 187193.
  • Hockly E., Beunard J.-L., Lowden P. and Bates G. P. (2003) Minocycline is not beneficial in a phenotypic mouse model of Huntington's disease. Ann. Neurol. 54, 842843.
  • Ichitani Y., Okamura H., Matsumoto Y., Nagatsu I. and Ibata Y. (1991) Degeneration of the nigral dopamine neurons after 6-hydroxydopamine injection into the rat striatum. Brain Res. 549, 350353.
  • Itzhak Y., Martin J. L. and Ali S. F. (1999) Methamphetamine- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice. Synapse 34, 305312.
  • Jorgensen M. B., Finsen B. R., Jensen M. B., Castellano B., Diemer N. H. and Zimmer J. (1993) Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp. Neurol. 120, 7088.
  • Kato H., Tanaka S., Oikawa T., Koike T., Takahashi A. and Itoyama Y. (2000) Expression of microglial response factor-1 in microglia and macrophages following cerebral ischemia in the rat. Brain Res. 882, 206211.
  • Kreutzberg G. W. (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312318.
  • Kriz J., Nguyen M. D. and Julien J. P. (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 10, 268278.
  • Langston J. W., Forno L. S., Tetrud J., Reeves A. G., Kaplan J. A. and Karluk D. (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598605.
  • Lawson L. J., Perry V. H., Dri P. and Gordon S. (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151170.
  • Leng A., Mura A., Feldon J. and Ferger B. (2005) Tumor necrosis factor-alpha receptor ablation in a chronic MPTP mouse model of Parkinson's disease. Neurosci. Lett. 375, 107111.
  • Li Y., Liu L., Barger S. W., Mrak R. E. and Griffin W. S. (2001) Vitamin E suppression of microglial activation is neuroprotective. J. Neurosci. Res. 66, 163170.
  • Liberatore G. T., Jackson-Lewis V., Vukosavic S., Mandir A. S., Vila M., McAuliffe W. G., Dawson V. L., Dawson T. M. and Przedborski S. (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 14031409.
  • Liu Y., Qin L., Li G., Zhang W., An L., Liu B. and Hong J. S. (2003) Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J. Pharmacol. Exp. Ther. 305, 212218.
  • Merrill J. E. (1992) Proinflammatory and anti-inflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J. Immunother. 12, 167170.
  • Miller D. B. and O'Callaghan J. P. (1994) Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther. 270, 752760.
  • Mogi M., Harada M., Narabayashi H., Inagaki H., Minami M. and Nagatsu T. (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile Parkinsonism and Parkinson's disease. Neurosci. Lett. 211, 1316.
  • Norenberg M. D. (2005) The reactive astrocyte , in The Role of Glia in Neurotoxicity (AschnerM. and CostaL. G., eds), 2nd edn, pp. 7392. CRC Press, Boca Raton.
  • O'Callaghan J. P. (1991) Quantification of glial fibrillary acidic protein: comparison of slot-immunobinding assays with a novel sandwich ELISA. Neurotoxicol. Teratol. 13, 275281.
  • O'Callaghan J. P. (1993) Quantitative features of reactive gliosis following toxicant-induced damage of the CNS. Ann. N. Y. Acad. Sci. 679, 195210.
  • O'Callaghan J. P. (2002) Measurement of glial fibrillary acidic protein, in Current Protocols in Toxicology (CostaL. G., ed.), pp. 12.8.1–12.8.12. John Wiley & Sons, New York.
  • O'Callaghan J. P. and Miller D. B. (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther. 270, 741751.
  • O'Callaghan J. P., Miller D. B. and Reinhard J. F. Jr (1990) Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res. 521, 7380.
  • O'Callaghan J. P., Martin P. M. and Mass M. J. (1998) The MAP kinase cascade is activated prior to the induction of gliosis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of dopaminergic neurotoxicity. Ann. N. Y. Acad. Sci. 844, 4049.
  • Raivich G., Bluethmann H. and Kreutzberg G. W. (1996) Signaling molecules and neuroglial activation in the injured central nervous system. Keio J. Med. 45, 239247.
  • Ransohoff R. M., Glabinski A. and Tani M. (1996) Chemokines in immune-mediated inflammation of the central nervous system. Cytokine Growth Factor Rev. 7, 3546.
  • Ren L., Lubrich B., Biber K. and Gebicke-Haerter P. J. (1999) Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Brain Res. Mol. Brain Res. 65, 198205.
  • Rousselet E., Callebert J., Parain K., et al. (2002) Role of TNF-alpha receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp. Neurol. 177, 183192.
  • Ryu J. K., Franciosi S., Sattayaprasert P., Kim S. U. and McLarnon J. G. (2004) Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia 48, 8590.
  • Sairanen T., Carpen O., Karjalainen-Lindsberg M. L., Paetau A., Turpeinen U., Kaste M. and Lindsberg P. J. (2001) Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke. Stroke 32, 17501758.
  • Sauer H. and Oertel W. H. (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59, 401415.
  • Scali C., Prosperi C., Giovannelli L., Bianchi L., Pepeu G. and Casamenti F. (1999) Beta (1–40) amyloid peptide injection into the nucleus basalis of rats induces microglia reaction and enhances cortical gamma-amino butyric acid release in vivo. Brain Res. 831, 319321.
  • Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J. and Klenk D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 7685.
  • Sriram K. and O'Callaghan J. P. (2005) Signaling mechanisms underlying toxicant-induced gliosis , in The Role of Glia in Neurotoxicity (AschnerM. and CostaL. G., eds), 2nd edn, pp. 141171. CRC Press, Boca Raton.
  • Sriram K., Matheson J. M., Benkovic S. A., Miller D. B., Luster M. I. and O'Callaghan J. P. (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. FASEB J. 16, 14741476.
  • Sriram K., Benkovic S. A., Hebert M. A., Miller D. B. and O'Callaghan J. P. (2004) Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo? J. Biol. Chem. 279, 19 93619 947.
  • Stirling D. P., Khodarahmi K., Liu J., McPhail L. T., McBride C. B., Steeves J. D., Ramer M. S. and Tetzlaff W. (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J. Neurosci. 24, 21822190.
  • Stoll G. and Jander S. (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol. 58, 233247.
  • Streit W. J., Walter S. A. and Pennell N. A. (1999) Reactive microgliosis. Prog. Neurobiol. 57, 563581.
  • Teismann P., Tieu K., Choi D. K., Wu D. C., Naini A., Hunot S., Vila M., Jackson-Lewis V. and Przedborski S. (2003) Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc. Natl Acad. Sci. USA 100, 54735478.
  • Thomas D. M. and Kuhn D. M. (2005) Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity. J. Pharmacol. Exp. Ther. 313, 870876.
  • Tikka T. M. and Koistinaho J. E. (2001) Minocycline provides neuroprotection against N-methyl-d-aspartate neurotoxicity by inhibiting microglia. J. Immunol. 166, 75277533.
  • Tikka T., Fiebich B. L., Goldsteins G., Keinanen R. and Koistinaho J. (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci. 21, 25802588.
  • Tsuji M., Wilson M. A., Lange M. S. and Johnston M. V. (2004) Minocycline worsens hypoxic–ischemic brain injury in a neonatal mouse model. Exp. Neurol. 189, 5865.
  • Van Den Bosch L., Tilkin P., Lemmens G. and Robberecht W. (2002) Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport 13, 10671070.
  • Versijpt J. J., Dumont F., Van Laere K. J., Decoo D., Santens P., Audenaert K., Achten E., Slegers C., Dierckx R. A. and Korf J. (2003) Assessment of neuroinflammation and microglial activation in Alzheimer's disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study . Eur. Neurol. 50, 3947.
  • Wu D. C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., Choi D. K., Ischiropoulos H. and Przedborski S. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 17631771.
  • Wu E. Y., Langston J. W. and Di Monte D. A. (1992) Toxicity of the 1-methyl-4-phenyl-2,3-dihydropyridinium and 1-methyl-4-phenylpyridinium species in primary cultures of mouse astrocytes. J. Pharmacol. Exp. Ther. 262, 225230.
  • Yan Q., Zhang J., Liu H., Babu-Khan S., Vassar R., Biere A. L., Citron M. and Landreth G. (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J. Neurosci. 23, 75047509.
  • Yang L., Sugama S., Chirichigno J. W. et al. (2003) Minocycline enhances MPTP toxicity to dopaminergic neurons. J. Neurosci. Res. 74, 278285.
  • Yrjanheikki J., Keinanen R., Pellikka M., Hokfelt T. and Koistinaho J. (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl Acad. Sci. USA 95, 15 76915 774.
  • Yrjanheikki J., Tikka T., Keinanen R., Goldsteins G., Chan P. H. and Koistinaho J. (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl Acad. Sci. USA 96, 13 49613 500.
  • Zawadzka M. and Kaminska B. (2005) A novel mechanism of FK506-mediated neuroprotection: downregulation of cytokine expression in glial cells. Glia 49, 3651.