SEARCH

SEARCH BY CITATION

References

  • Ahmadi F. A., Linseman D. A., Grammatopoulos T. N., Jones S. M., Bouchard R. J., Freed C. R., Heidenreich K. A. and Zawada W. M. (2003) The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J. Neurochem. 87, 914921.
  • Alam M. and Schmidt W. J. (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav. Brain Res. 136, 317324.
  • Allam M. F., Del Castillo A. S. and Navajas R. F. (2005) Parkinson's disease risk factors: genetic, environmental, or both? Neurol. Res. 27, 206208.
  • Ashwell K. (1991) The distribution of microglia and cell death in the fetal rat forebrain. Brain Res. Dev. Brain Res. 58, 112.
  • Banati R. B., Gehrmann J., Schubert P. and Kreutzberg G. W. (1993) Cytotoxicity of microglia. Glia 7, 111118.
  • Bantubungi K., Jacquard C., Greco A. et al. (2005) Minocycline in phenotypic models of Huntington's disease. Neurobiol. Dis. 18, 206217.
  • Bashkatova V., Alam M., Vanin A. and Schmidt W. J. (2004) Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp. Neurol. 186, 235241.
  • Beal M. F. (2001) Experimental models of Parkinson's disease. Nat. Rev. Neurosci. 2, 325334.
  • De Bernardo S., Canals S., Casarejos M. J. and Mena M. A. (2003) Glia-conditioned medium induces de novo synthesis of tyrosine hydroxylase and increases dopamine cell survival by differential signaling pathways. J. Neurosci. Res. 73, 818830.
  • Betarbet R., Sherer T. B., MacKenzie G., Garcia-Osuna M., Panov A. V. and Greenamyre J. T. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 13011306.
  • Blum D., Chtarto A., Tenenbaum L., Brotchi J. and Levivier M. (2004) Clinical potential of minocycline for neurodegenerative disorders. Neurobiol. Dis. 17, 359366.
  • Canals S., Casarejos M. J., Rodriguez-Martin E., De Bernardo S. and Mena M. A. (2001) Neurotrophic and neurotoxic effects of nitric oxide on fetal midbrain cultures. J. Neurochem. 76, 5668.
  • Casarejos M. J., Solano R. M., Menendez J., Rodriguez-Navarro J. A., Correa C., Garcia de Yebenes J. and Mena M. A. (2005) Differential effects of L-DOPA on monoamine metabolism, cell survival and glutathione production in midbrain neuronal-enriched cultures from parkin knockout and wild-type mice. J. Neurochem. 94, 10051014.
  • Chen M., Ona V. O., Li M. et al. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797801.
  • Choi S. H., Joe E. H., Kim S. U. and Jin B. K. (2003) Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 23, 58775886.
  • Coulom H. and Birman S. (2004) Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J. Neurosci. 24, 10 99310 998.
  • Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889909.
  • Decker T. and Lohmann-Matthes M. L. (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Meth. 115, 6169.
  • Diaz-Corrales F. J., Asanuma M., Miyazaki I., Miyoshi K. and Ogawa N. (2005) Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 133, 117135.
  • Di Monte D. A. (2003) The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol. 2, 531538.
  • Domercq M. and Matute C. (2004) Neuroprotection by tetracyclines. Trends Pharmacol. Sci. 25, 609612.
  • Du Y., Ma Z., Lin S. et al. (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 14 66914 674.
  • Gao H. M., Liu B. and Hong J. S. (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 23, 61816187.
  • Gavrieli Y., Sherman Y. and Ben-Sasson S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493501.
  • Hardy G. H. (2003) Mendelian proportions in a mixed population. 1908. Yale J. Biol. Med. 76, 7980.
  • Hilwig I. and Gropp A. (1975) pH-dependent fluorescence of DNA and RNA in cytologic staining with ‘33258’ Hoechst. Exp. Cell Res. 91, 457460.
  • Hirsch E. C. and Hunot S. (2000) Nitric oxide, glial cells and neuronal degeneration in parkinsonism. Trends Pharmacol. Sci. 21, 163165.
  • Hoglinger G. U., Feger J., Prigent A., Michel P. P., Parain K., Champy P., Ruberg M., Oertel W. H. and Hirsch E. C. (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 491502.
  • Hughes E. H., Schlichtenbrede F. C., Murphy C. C., Broderick C., Van Rooijen N., Ali R. R. and Dick A. D. (2004) Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism. Exp. Eye Res. 78, 10771084.
  • Itier J. M., Ibañez P., Mena M. A. et al. (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet. 12, 22772291.
  • Jenner P. (2003) Oxidative stress in Parkinson's disease. Ann. Neurol. 53, S26S38.
  • Kerr J. F., Wyllie A. H. and Currie A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239257.
  • Lapointe N., St-Hilaire M., Martinoli M. G., Blanchet J., Gould P., Rouillard C. and Cicchetti F. (2004) Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J. 18, 717719.
  • Lees A. J. (1992) When did Ray Kennedy's Parkinson's disease begin? Mov. Disord. 7, 110116.
  • Lin S., Zhang Y., Dodel R., Farlow M. R., Paul S. M. and Du Y. (2001) Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci. Lett. 315, 6164.
  • Manning-Bog A. B., McCormack A. L., Li J., Uversky V. N., Fink A. L. and Di Monte D. A. (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J. Biol. Chem. 277, 16411644.
  • McGeer E. G. and McGeer P. L. (2005) Pharmacologic approaches to the treatment of amyotrophic lateral sclerosis. Biodrugs 19, 3137.
  • Mena M. A., Casarejos M. J., Carazo A., Paino C. and García de Yebenes J. (1997) Glia protect fetal midbrain dopamine neurons in culture from L-DOPA toxicity through multiple mechanisms. J. Neural Transm. 104, 317328.
  • Mena M. A., De Bernardo S., Casarejos M. J., Canals S. and Rodriguez-Martin E. (2002) The role of astroglia on the survival of dopamine neurons. Mol. Neurobiol. 25, 245263.
  • Moon Y., Lee K. H., Park J. H., Geum D. and Kim K. (2005) Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J. Neurochem. 93, 11991208.
  • Nicklas W. J., Vyas I. and Heikkila R. E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36, 25032508.
  • Olanow C. W. and Tatton W. G. (1999) Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123144.
  • Palacino J. J., Sagi D., Goldberg M. S., Krauss S., Motz C., Wacker M., Klose J. and Shen J. (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279, 18 61418 622.
  • Pardo B., Paino C. L., Casarejos M. J. and Mena M. A. (1997) Neuronal-enriched cultures from embryonic rat ventral mesencephalon for pharmacological studies of dopamine neurons. Brain Res. Brain Res. Protoc. 1, 127132.
  • Periquet M., Corti O., Jacquier S. and Brice A. (2005) Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J. Neurochem. 95, 1259–1276.
  • Pi R., Li W., Lee N. T., Chan H. H., Pu Y., Chan L. N., Sucher N. J., Chang D. C., Li M. and Han Y. (2004) Minocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways. J. Neurochem. 91, 12191230.
  • Pyo H., Joe E., Jung S., Lee S. H. and Jou I. (1999) Gangliosides activate cultured rat brain microglia. J. Biol. Chem. 274, 34 58434 589.
  • Ramsay R. R., Salach J. I. and Singer T. P. (1986a) Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Biochem. Biophys. Res. Commun. 134, 743748.
  • Ramsay R. R., Salach J. I., Dadgar J. and Singer T. P. (1986b) Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem. Biophys. Res. Commun. 135, 269275.
  • Rodriguez-Martin E., Casarejos M. J., Bazan E., Canals S., Herranz A. S. and Mena M. A. (2000) Nitric oxide induces differentiation in the NB69 human catecholamine-rich cell line. Neuropharmacology 39, 20902100.
  • Ryu E. J., Harding H. P., Angelastro J. M., Vitolo O. V., Ron D. and Greene L. A. (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J. Neurosci. 22, 10 69010 698.
  • Schapira A. H., Cooper J. M., Dexter D., Clark J. B., Jenner P. and Marsden C. D. (1990) Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54, 823827.
  • Serrano A., Menendez J., Casarejos M. J., Solano R. M., Gallego E., Sanchez M., Mena M. A. and Garcia de Yebenes J. (2005) Effects of cinnarizine, a calcium antagonist that produces human parkinsonism, in parkin knock out mice. Neuropharmacology 49, 208219.
  • Sherer T. B., Betarbet R., Stout A. K., Lund S., Baptista M., Panov A. V., Cookson M. R. and Greenamyre J. T. (2002) An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22, 70067015.
  • Sherer T. B., Betarbet R., Kim J. H. and Greenamyre J. T. (2003a) Selective microglial activation in the rat rotenone model of Parkinson's disease. Neurosci. Lett. 341, 8790.
  • Sherer T. B., Betarbet R., Testa C. M., Seo B. B., Richardson J. R., Kim J. H., Miller G. W., Yagi T., Matsuno-Yagi A. and Greenamyre J. T. (2003b) Mechanism of toxicity in rotenone models of Parkinson's disease. J. Neurosci. 23, 10 75610 764.
  • Sherer T. B., Kim J. H., Betarbet R. and Greenamyre J. T. (2003c) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol. 179, 916.
  • Streit W. J. and Kreutzberg G. W. (1987) Lectin binding by resting and reactive microglia. J. Neurocytol. 16, 249260.
  • Tada-Oikawa S., Hiraku Y., Kawanishi M. and Kawanishi S. (2003) Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci. 73, 32773288.
  • Thomas M. and Le W. D. (2004) Minocycline: neuroprotective mechanisms in Parkinson's disease. Curr. Pharma. Des. 10, 679686.
  • Tikka T. M. and Koistinaho J. E. (2001) Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J. Immunol. 166, 75277533.
  • Tikka T., Fiebich B. L., Goldsteins G., Keinanen R. and Koistinaho J. (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci. 21, 25802588.
  • Uversky V. N., Li J. and Fink A. L. (2001) Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Lett. 500, 105108.
  • Vila M., Jackson-Lewis V., Guegan C., Wu D. C., Teismann P., Choi D. K., Tieu K. and Przedborski S. (2001) The role of glial cells in Parkinson's disease. Curr. Opin. Neurol. 14, 483489.
  • Wu D. C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., Choi D. K., Ischiropoulos H. and Przedborski S. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 17631771.
  • Yrjanheikki J., Keinanen R., Pellikka M., Hokfelt T. and Koistinaho J. (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl Acad. Sci. USA 95, 15 76915 774.
  • Zhang W., Narayanan M. and Friedlander R. M. (2003) Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann. Neurol. 53, 267270.
  • Zhu S., Stavrovskaya I. G., Drozda M. et al. (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417, 7478.
  • Zoccarato F., Toscano P. and Alexandre A. (2005) Dopamine-derived dopaminochrome promotes H2O2 release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. J. Biol. Chem. 280, 15 58715 594.