Distribution of PINK1 and LRRK2 in rat and mouse brain

Authors


Address all correspondence and reprint requests to Veerle Baekelandt, Katholieke Universiteit Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium.
E-mail: veerle.baekelandt@med.kuleuven.be

Abstract

Mutations in two kinases, PTEN induced kinase 1 (PINK1) and leucine-rich repeat kinase 2 (LRRK2), have been shown to segregate with familial forms of Parkinson's disease. Although these two genes are expected to be involved in molecular mechanisms relevant to Parkinson's disease, their precise anatomical localization in mammalian brain is unknown. We have mapped the expression of PINK1 and LRRK2 mRNA in the rat and mouse brain via in situ hybridization histochemistry using riboprobes. We found that both genes are broadly expressed throughout the brain with similar neuroanatomical distribution in mouse compared to rat. PINK1 mRNA abundance was rather uniform throughout the different brain regions with expression in cortex, striatum, thalamus, brainstem and cerebellum. LRRK2, on the other hand, showed strong regional differences in expression levels with highest levels seen in the striatum, cortex and hippocampus. Weak LRRK2 expression was seen in the hypothalamus, olfactory bulb and substantia nigra. We confirmed these distributions for both genes using quantitative RT-PCR and for LRRK2 by western immunoblot. As their broad expression patterns contrast with localized neuropathology in Parkinson's disease, the pathogenicity of clinical mutant forms of PINK1 and LRRK2 may be mediated by nigrostriatal-specific mechanisms.

Ancillary