SEARCH

SEARCH BY CITATION

References

  • Abe K. and Kimura H. (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 10661071.
  • Abu-Soud H., Gachhui R., Raushel F. and Stuehr D. (1997) The ferrous–dioxy complex of neuronal nitric oxide synthase. Divergent effects of l-arginine and tetrahydrobiopterin on its stability. J. Biol. Chem. 272, 17 34917 353.
  • Agulló L. and García A. (1992a) Characterization of noradrenaline-stimulated cyclic GMP formation in brain astrocytes in culture. Biochem. J. 288, 619624.
  • Agulló L. and García A. (1992b) Different receptors mediate stimulation of nitric oxide-dependent cyclic GMP formation in neurons and astrocytes in culture. Biochem. Biophys. Res. Commun. 182, 13621368.
  • Akama K. T. and Van Eldik L. J. (2000) β-Amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β- and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor- and NFκΒ-inducing kinase-dependent signaling mechanism. J. Biol. Chem. 275, 79187924.
  • Akama K. T., Albanese C., Pestell R. G. and Van Eldik L. J. (1998) Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc. Natl Acad. Sci. USA 95, 57955800.
  • Almeida A. and Bolaños J. P. (2001) A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J. Neurochem. 77, 676690.
  • Almeida A., Almeida J., Bolaños J. P. and Moncada S. (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically-generated ATP in astrocyte protection. Proc. Natl Acad. Sci. USA 98, 15 29415 299.
  • Almeida A., Moncada S. and Bolaños J. P. (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat. Cell Biol. 6, 4551.
  • Andersen J. K. (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10, S18S25.
  • Aquilano K., Rotilio G. and Ciriolo M. R. (2003) Proteasome activation and nNOS down-regulation in neuroblastoma cells expressing a Cu,Zn superoxide dismutase mutant involved in familial ALS. J. Neurochem. 85, 13241335.
  • Bagasra O., Michaels F. H., Zheng Y. M., Bobroski L. E., Spitsin S. V., Fu Z. F., Tawadros R. and Koprowski H. (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc. Natl Acad. Sci. USA 92, 12 04112 045.
  • Bal-Price A. and Brown G. C. (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia, inhibiting neuronal respiration, causing glutamate release and excitoxicity. J. Neurosci. 21, 64806491.
  • Barker J. E., Bolaños J. P., Land J. M., Clark J. B. and Heales S. J. R. (1996) Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev. Neurosci. 18, 391396.
  • Beal M. F., Ferrante R., Browne S., Mattews R., Kowall N. and Brown R. H. (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42, 644654.
  • Beckman J. S., Beckman T. W., Chen J., Marshall P. A. and Freeman B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci. USA 87, 16201624.
  • Beckman J. S., Carson M., Smith C. D. and Koppenol W. H. (1993) ALS, SOD and peroxynitrite. Nature 364, 584.
  • Beckman J. S., Estévez A. G., Crow J. P. and Barbeito L. (2001) Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. 24, S15S20.
  • Bellamy T. C., Griffiths C. and Garthwaite J. (2002) Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J. Biol. Chem. 277, 31 80131 807.
  • Beltrán B., Mathur A., Duchen M. R., Erusalimsky J. D. and Moncada S. (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl Acad. Sci. USA 97, 14 60214 607.
  • Bennett M. C., Diamond D. M., Stryker S. L., Parks J. K. and Parker W. D. Jr (1992) Cytochrome oxidase inhibition: a novel animal model of Alzheimer's disease. J. Geriatr. Psychiatry Neurol. 5, 93101.
  • Ben-Yoseph O., Boxer P. A. and Ross B. D. (1996) Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. J. Neurochem. 66, 23292337.
  • Bharath S. and Andersen J. K. (2005) Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson's disease. Antioxid. Redox Signal. 7, 900910.
  • Bizzozero O. A., DeJesus G., Bixler H. A. and Pastuszyn A. (2005) Evidence of nitrosative damage in the brain white matter of patients with multiple sclerosis. Neurochem. Res. 30, 139149.
  • Blough N. V. and Zafiriou O. C. (1985) Reactions of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg. Chem. 24, 35023504.
  • Bö L., Dawson T. M., Wesselingh S., Mork S., Choi S., Kong P. A., Hanley D. and Trapp B. D. (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis. Ann. Neurol. 36, 778786.
  • Bolaños J. P. and Almeida A. (1999) Roles of nitric oxide in brain hypoxia–ischemia. Biochim. Biophys. Acta 1411, 415436.
  • Bolaños J. P., Peuchen S., Heales S. J. R., Land J. M. and Clark J. B. (1994) Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910916.
  • Bolaños J. P., Heales S. J. R., Land J. M. and Clark J. B. (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary cultures. J. Neurochem. 64, 19651972.
  • Bolaños J. P., Heales S. J. R., Peuchen S., Barker J. E., Land J. M. and Clark J. B. (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Rad. Biol. Med. 21, 9951001.
  • Bolaños J. P., Almeida A., Stewart V., Peuchen S., Land J. M., Clark J. B. and Heales S. J. R. (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68, 22272240.
  • Bonfoco E., Krainc C., Ankarcrona M., Nicotera P. and Lipton S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl Acad. Sci. USA 92, 71627166.
  • Bossy-Wetzel E., Talantova M. V., Lee W. D. et al. (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41, 351365.
  • Boullerne A. I., Petry K. G., Meynard M. and Geffard M. (1995) Indirect evidence for nitric oxide involvement in multiple sclerosis by characterization of circulating antibodies directed against conjugated S-nitrosocysteine. J. Neuroimmunol. 60, 117124.
  • Boyd-Kimball D., Sultana R., Abdul H. M. and Butterfield D. A. (2005) γ-Glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Aβ(1–42)-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. J. Neurosci. Res. 79, 700706.
  • Bredt D. S., Hwang P. M. and Snyder S. H. (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347, 768770.
  • Brorson J. R. and Zhang H. (1997) Disrupted [Ca2+]i homeostasis contributes to the toxicity of nitric oxide in cultured hippocampal neurons. J. Neurochem. 69, 18821889.
  • Brorson J. R., Sulit R. A. and Zhang H. (1997) Nitric oxide disrupts Ca2+ homeostasis in hippocampal neurons. J. Neurochem. 68, 95105.
  • Brorson J. R., Schumacker P. T. and Zhang H. (1999) Nitric oxide acutely inhibits neuronal energy metabolism. J. Neurosci. 19, 147158.
  • Brosnan C. F., Battisttini L., Raine C. S., Dickson D. W., Casadevall A. and Lee S. C. (1994) Reactive nitrogen intermediates in human neuropathology: an overview. Dev. Neurosci. 16, 152161.
  • Brown G. C. and Borutaite V. (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 1658, 4449.
  • Brown G. C. and Cooper C. E. (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356, 295298.
  • Brown G. C., Bolaños J. P., Heales S. J. R. and Clark J. B. (1995) Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci. Lett. 193, 201204.
  • Carling D. (2004) The AMP-activated protein kinase cascade – a unifying system for energy control. Trends Biochem. Sci. 29, 1824.
  • Casley C. S., Canevari L., Land J. M., Clark J. B. and Sharpe M. A. (2002) β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91100.
  • Cassina A. and Radi R. (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch. Biochem. Biophys. 328, 309316.
  • Chang J., Rao N. V., Markewitz B. A., Hoidal J. R. and Michael J. R. (1996) Nitric oxide donor prevents hydrogen peroxide-mediated endothelial cell injury. Am. J. Physiol. 270, L931L949.
  • Chiarugi A. (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol. Sci. 23, 122129.
  • Chung K. K., Thomas B., Li X., Pletnikova O., Troncoso J. C., Marsh L., Dawson V. L. and Dawson T. M. (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 13281331.
  • Cidad P., Almeida A. and Bolaños J. P. (2004) Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5′-AMP-activated protein kinase. Biochem. J. 384, 629636.
  • Cipriani G., Rapizzi E., Vannacci A., Rizzuto R., Moroni F. and Chiarugi A. (2005) Nuclear poly (ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J. Biol. Chem. 280, 17 22717 234.
  • Cleeter M. W. J., Cooper J. M., Darley-Usmar V. M., Moncada S. and Schapira A. H. (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative diseases. FEBS Lett. 345, 5054.
  • Clementi E., Brown G. C., Feelisch M. and Moncada S. (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl Acad. Sci. USA 95, 76317636.
  • Cooper C. E. (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem. Sci. 27, 489492.
  • Critchlow S. E. and Jackson S. P. (1998) DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394398.
  • Culcasi M., Lafon-Cazal M., Pietri S. and Bockaert J. (1994) Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J. Biol. Chem. 269, 12 58912 593.
  • Cunningham C., Wilcockson D. C., Campion S., Lunnon K. and Perry V. H. (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 92759284.
  • Davis R. E., Miller S., Herrnstadt C. et al. (1997) Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 45264531.
  • Dawson V. L. and Dawson T. M. (1996) Nitric oxide neurotoxicity. J. Chem. Neuroanatom. 10, 179190.
  • Dawson V. L., Dawson T. M., London E. D., Bredt D. S. and Snyder S. H. (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl Acad. Sci. USA 88, 63686371.
  • Dawson V. L., Dawson T. M., Bartley D. A., Uhl G. R. and Snyder S. H. (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 26512661.
  • Diaz-Hernandez J. I., Almeida A., Delgado-Esteban M., Fernandez E. and Bolanos J. P. (2005) Knockdown of glutamate–cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J. Biol. Chem. 280, 38 99239 001.
  • Drake J., Kanski J., Varadarajan S., Tsoras M. and Butterfield D. A. (2002) Elevation of brain glutathione by γ-glutamylcysteine ethyl ester protects against peroxynitrite-induced oxidative stress. J. Neurosci. Res. 68, 776784.
  • Dringen R. (2000) Metabolism and functions of glutathione in brain. Progr. Neurobiol. 62, 649671.
  • Dringen R., Kussmaul L., Gutterer J. M., Hirrlinger J. and Hamprecht B. (1999a) The glutathione system of peroxide detoxification is less efficient in neurons than in astrocytes. J. Neurochem. 72, 25232530.
  • Dringen R., Pfeiffer B. and Hamprecht B. (1999b) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562569.
  • Duport S. and Garthwaite J. (2005) Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience 135, 11551166.
  • Erecinska M., Nelson D. and Vanderkooi J. M. (1995) Effects of NO-generating compounds on synaptosomal energy metabolism. J. Neurochem. 65, 26992705.
  • Galea E., Feinstein D. L. and Reis D. J. (1992) Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl Acad. Sci. USA 89, 10 94510 949.
  • Gao H. M., Liu B., Zhang W. and Hong J. S. (2003) Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. FASEB J. 17, 19571959.
  • García-Nogales P., Almeida A. and Bolaños J. P. (2003) Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J. Biol. Chem. 278, 864874.
  • Garthwaite G., Batchelor A. M., Goodwin D. A., Hewson A. K., Leeming K., Ahmed Z., Cuzner M. L. and Garthwaite J. (2005) Pathological implications of iNOS expression in central white matter: an ex vivo study of optic nerves from rats with experimental allergic encephalomyelitis. Eur. J. Neurosci. 21, 21272135.
  • Garthwaite J., Charles S. L. and Chess-Williams R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain. Nature 336, 385387.
  • Gegg M. E., Beltran B., Salas-Pino S., Bolaños J. P., Clark J. B., Moncada S. and Heales S. J. R. (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J. Neurochem. 86, 228237.
  • Gegg M. E., Clark J. B. and Heales S. J. (2005) Co-culture of neurones with glutathione-deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate–cysteine ligase activity. Brain Res. 1036, 16.
  • Golde S., Chandran S., Brown G. C. and Compston A. (2002) Different pathways for iNOS-mediated toxicity in vitro dependent on neuronal maturation and NMDA receptor expression. J. Neurochem. 82, 269282.
  • Haas J., Storch-Hagenlocher B., Biessmann A. and Wildemann B. (2002) Inducible nitric oxide synthase and argininosuccinate synthetase: co-induction in brain tissue of patients with Alzheimer's dementia and following stimulation with β-amyloid 1–42 in vitro. Neurosci. Lett. 322, 121125.
  • Hagen T., Taylor C. T., Lam F. and Moncada S. (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302, 19751978.
  • Hardie D. G., Carling D. and Sim A. T. R. (1989) The AMP-activated protein kinase: a multisubstrate regulator of lipid metabolism. Trends Biochem. Sci. 14, 2023.
  • Heinzel B., John M., Klatt P., Böhme E. and Mayer B. (1992) Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem. J. 281, 627630.
  • Heneka M. T. and Feinstein D. L. (2001) Expression and function of inducible nitric oxide synthase in neurons. J. Neuroimmunol. 114, 818.
  • Heneka M. T., Wiesinger H., Dumitrescu-Ozimek L., Riederer P., Feinstein D. L. and Klockgether T. (2001) Neuronal and glial co-expression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 906916.
  • Herceg Z. and Wang Z. Q. (2001) Functions of poly (ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477, 97110.
  • Hers H. G. and Van Schaftingen E. (1982) Fructose 2,6-bisphosphate 2 years after its discovery. Biochem. J. 206, 112.
  • Hibbs J. B. Jr, Taintor R. R., Vavrin Z. and Rachlin E. M. (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 8794.
  • Hill K. E., Zollinger L. V., Watt H. E., Carlson N. G. and Rose J. W. (2004) Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J. Neuroimmunol. 151, 171179.
  • Hsu M., Srinivas B., Kumar J., Subramanian R. and Andersen J. (2005) Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease. J. Neurochem. 92, 10911103.
  • Hu J., Akama K. T., Krafft G. A., Chromy B. A. and Van Eldik L. J. (1998) Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 785, 195206.
  • Huber A., Bai P., De Murcia J. M. and De Murcia G. (2004) PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst.) 3, 11031118.
  • Iravani M. M., Kashefi K., Mander P., Rose S. and Jenner P. (2002) Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 110, 4958.
  • Ischiropoulos H., Zhu L. C., Chen J., Tsai M., Martin J. C., Smith C. D. and Beckman J. S. (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298, 431437.
  • Iwata-Ichikawa E., Kondo Y., Miyazaki I., Asanuma M. and Ogawa N. (1999) Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J. Neurochem. 72, 23342344.
  • Jenner P., Dexter D. T., Sian J., Schapira A. H. V. and Marsden C. D. (1992) Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. Ann. Neurol. 32, S82S87.
  • Johnson A. W., Land J. M., Thompson E. J., Bolaños J. P., Clark J. B. and Heales S. J. R. (1995) Evidence for increased nitric oxide production in multiple sclerosis. J. Neurol. Neurosurg. Psyquiatr. 57, 107.
  • Jurado S., Sánchez-Prieto J. and Torres M. (2003) Differential expression of nitric oxide-sensitive guanylyl cyclase subunits during the development of rat cerebellar granule cells: regulation via N-methyl-d-aspartate receptors. J. Cell Sci. 116, 31653175.
  • Jurado S., Sanchez-Prieto J. and Torres M. (2005) Expression of cGMP-dependent protein kinases (I and II) and neuronal nitric oxide synthase in the developing rat cerebellum. Brain Res. Bull. 65, 111115.
  • Keelan J., Vergun O. and Duchen M. R. (1999) Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons. J. Physiol. 520, 797813.
  • Keil U., Bonert A., Marques C. A. et al. (2004) Amyloid β-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J. Biol. Chem. 279, 50 31050 320.
  • Keynes R. G., Duport S. and Garthwaite J. (2004) Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide. Eur. J. Neurosci. 19, 11631173.
  • Kim M. Y., Zhang T. and Kraus W. L. (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 19, 19511967.
  • Kish S. J., Bergeron C., Rajput A., Dozic S., Mastrogiacomo F., Chang L. J., Wilson J. M., DiStefano L. M. and Nobrega J. N. (1992) Brain cytochrome oxidase in Alzheimer's disease. J. Neurochem. 59, 776779.
  • Klein J. A. and Ackerman S. L. (2003) Oxidative stress, cell cycle, and neurodegeneration. J. Clin. Invest. 111, 785793.
  • Kletzien R. F., Harris P. K. W. and Foellmi L. A. (1994) Glucose-6-phosphate dehydrogenase: a housekeeping enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J. 8, 174181.
  • Knowles R. G. and Moncada S. (1994) Nitric oxide synthases in mammals. Biochem. J. 298, 249258.
  • Knowles R. G., Palacios M., Palmer R. M. J. and Moncada S. (1989) Formation of nitric oxide from l-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc. Natl Acad. Sci. USA 86, 51595162.
  • Koh D. W., Dawson T. M. and Dawson V. L. (2005) Mediation of cell death by poly (ADP-ribose) polymerase-1. Pharmacol. Res. 52, 514.
  • Kussmaul L., Hamprecht B. and Dringen R. (1999) The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH. J. Neurochem. 73, 12461253.
  • Lafon-Cazal M., Pietri S., Culcasi M. and Bockaert J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535537.
  • Ledo A., Barbosa R. M., Gerhardt G. A., Cadenas E. and Laranjinha J. (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc. Natl Acad. Sci. USA 102, 17 48317 488.
  • Lee P., Son D., Lee J., Kim Y. S., Kim H. and Kim S. Y. (2003) Excessive production of nitric oxide induces the neuronal cell death in lipopolysaccharide-treated rat hippocampal slice culture. Neurosci. Lett. 349, 3336.
  • Lehninger A. L., Nelson D. L. and Cox M. M. (1995) Principles of Biochemistry. Worth Publishers Inc., New York.
  • Li J., Baud O., Vartanian T., Volpe J. J. and Rosenberg P. A. (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl Acad. Sci. USA 102, 99369941.
  • Liberatore G. T., Jackson-Lewis V., Vukosavic S., Mandir A. S., Vila M., McAuliffe W. G., Dawson V. L., Dawson T. M. and Przedborski S. (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 14031409.
  • Lindahl T. S. S. M., Poirier G. G. and Klungland A. (1995) Post-translational modification of poly (ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci. 20, 405411.
  • Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S. V., Sucher N. J., Loscalzo J., Singel D. J. and Stamler J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626632.
  • Lizasoain I., Moro M. A., Knowles R. G., Darley-Usmar V. and Moncada S. (1996) Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J. 314, 877880.
  • Lu T., Pan Y., Kao S. Y., Li C., Kohane I., Chan J. and Yankner B. A. (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429, 883891.
  • Makar T. K., Nedergaard M., Preuss A., Gelbard A. S., Perumal A. S. and Cooper A. J. L. (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurones: evidence that astrocytes play an important role in antioxidative processes in the brain. J. Neurochem. 62, 4553.
  • Mander P. and Brown G. C. (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J. Neuroinflammation 2, 220.
  • Mander P., Borutaite V., Moncada S. and Brown G. C. (2005) Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J. Neurosci. Res. 79, 208215.
  • Marks J. D., Boriboun C. and Wang J. (2005) Mitochondrial nitric oxide mediates decreased vulnerability of hippocampal neurons from immature animals to NMDA. J. Neurosci. 25, 65616575.
  • Mason M. G., Nicholls P., Wilson M. T. and Cooper C. E. (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and non-competitive (copper) binding to cytochrome c oxidase. Proc. Natl Acad. Sci. USA 103, 708713.
  • Mattson M. P. (2004) Pathways towards and away from Alzheimer's disease. Nature 430, 631639.
  • Merrill J., Ignarro L. J., Sherman M. P., Melinek J. and Lane T. E. (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol. 151, 21322141.
  • Merrill J. E., Murphy S. P., Mitrovic B., Mackenzie-Graham A., Dopp J. C., Ding M., Griscavage J., Ignarro L. J. and Lowenstein C. J. (1997) Inducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J. Neurosci. Res. 48, 372384.
  • Minc-Golomb D., Yadid G., Tsarfaty I., Resau J. H. and Schwartz J. P. (1996) In vivo expression of inducible nitric oxide synthase in cerebellar neurons. J. Neurochem. 66, 15041509.
  • Mitrovic B., Ignarro L. J., Montestruque S., Smoll A. and Merrill J. E. (1994) Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience 61, 575585.
  • Mohanakumar K. P., Thomas B., Sharma S. M., Muralikrishnan D., Chowdhury R. and Chiueh C. C. (2002) Nitric oxide: an antioxidant and neuroprotector. Ann. NY Acad. Sci. 962, 389401.
  • Moncada S. and Erusalimsky J. D. (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nature Rev. 3, 214220.
  • Murphy S. and Grzybicki D. (1996) Glial, normal and pathological roles. Neuroscientist 2, 9099.
  • Murray J., Taylor S. W., Zhang B., Ghosh S. S. and Capaldi R. A. (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J. Biol. Chem. 278, 37 22337 230.
  • Mutisya E. M., Bowling A. C. and Beal M. F. (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer's disease. J. Neurochem. 63, 21792184.
  • Okuda Y., Nakatsuji Y., Fujimura H., Esumi H., Ogura T., Yanagihara T. and Sakoda S. (1995) Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J. Neuroimmunol. 62, 103112.
  • Oury T. D., Ho Y. S., Piantadosi C. A. and Crapo J. D. (1992) Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc. Natl Acad. Sci. USA 89, 97159719.
  • Palacios-Callender M., Quintero M., Hollis V. S., Springett R. J. and Moncada S. (2004) Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc. Natl Acad. Sci. USA 101, 76307635.
  • Palmer R. M. J., Ferrige A. G. and Moncada S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524526.
  • Palmer R. M., Ashton D. S. and Moncada S. (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333, 664666.
  • Parks J. K., Smith T. S., Trimmer P. A., Bennett J. P. and Parker W. D. (2001) Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J. Neurochem. 76, 10501056.
  • Pauwels P. J., Opperdoes F. R. and Trouet A. (1985) Effects of anti-mycin, glucose deprivation, and serum on cultures of neurons, astrocytes, and neuroblastoma cells. J. Neurochem. 44, 143148.
  • Peachman K. K., Lyles D. S. and Bass D. A. (2001) Mitochondria in eosinophils: functional role in apoptosis but not respiration. Proc. Natl Acad. Sci. USA 98, 17171722.
  • Poderoso J. J., Carreras M. C., Lisdero C., Riobó N., Schöper F. and Boveris A. (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 328, 8592.
  • Pou S., Pou W. S., Bredt D. S., Snyder S. H. and Rosen G. M. (1992) Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem. 267, 24 17324 176.
  • Radi R., Beckman J. S., Bush K. M. and Freeman B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 42444250.
  • Radi R., Rodríguez M., Castro L. and Telleri R. (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch. Biochem. Biophys. 308, 8995.
  • Rauhala P., Lin A. M. and Chiueh C. C. (1998) Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. FASEB J. 12, 165173.
  • Rees D. D., Palmer R. J. M. and Moncada S. (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc. Natl Acad. Sci. USA 86, 33753378.
  • Riobó N. A., Clementi E., Melani M., Boveris A., Cadenas E., Moncada S. and Poderoso J. J. (2001) Nitric oxide inhibits mitochondrial NADH: ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359, 139145.
  • Rosen D. R., Siddique T., Patterson D. et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 5962.
  • Rotilio G., Aquilano K. and Ciriolo M. R. (2003) Interplay of Cu,Zn superoxide dismutase and nitric oxide synthase in neurodegenerative processes. IUBMB Life 55, 629634.
  • Sagara J., Miura K. and Bannai S. (1993) Maintenance of neuronal glutathione by glial cells. J. Neurochem. 61, 16721676.
  • Salvemini F., Franzé A., Iervolino A., Filosa S., Salzano S. and Ursini M. V. (1999) Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J. Biol. Chem. 274, 27502757.
  • Sardon T., Baltrons M. A. and Garcia A. (2004) Nitric oxide-dependent and independent down-regulation of NO-sensitive guanylyl cyclase in neural cells. Toxicol. Lett. 149, 7583.
  • Schapira A. H. V., Cooper J. M., Dexter D., Clark J. B., Jenner P. and Marsden C. D. (1990a) Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54, 823827.
  • Schapira A. H. V., Mann V. M., Cooper J. M., Dexter D., Daniel S. E., Jenner P., Clark J. B. and Marsden C. D. (1990b) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J. Neurochem. 55, 21422145.
  • Schlossmann J. and Hofmann F. (2005) cGMP-dependent protein kinases in drug discovery. Drug Discov. Today 10, 627634.
  • Schweizer M. and Richter C. (1994) Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem. Biophys. Res. Commun. 204, 169175.
  • Sharpe M. A. and Cooper C. E. (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase. J. Biol. Chem. 273, 30 96130 972.
  • Simmons M. L. and Murphy S. (1992) Induction of nitric oxide synthase in glial cells. J. Neurochem. 59, 897905.
  • Sims N. R., Nilsson M. and Muyderman H. (2004) Mitochondrial glutathione: a modulator of brain cell death. J. Bioenerg. Biomembr. 36, 329333.
  • Small C. I., Lyles G. A. and Breen K. C. (2004) Inducible form of nitric oxide synthase expression in rat cortical neuronal cells in vitro. Neurobiol. Dis. 17, 7076.
  • Stuehr D. J. and Nathan C. F. (1989) Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumour target cells. J. Exp. Med. 169, 15431555.
  • Sultana R., Poon H. F., Cai J., Pierce W. M., Merchant M., Klein J. B., Markesbery W. R. and Butterfield D. A. (2006) Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol. Dis. 22, 7687.
  • Szabó C. and Ohshima H. (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1, 373385.
  • Takuma K., Phuagphong P., Lee E. K., Baba A. and Matsuda T. (2001) Anti-apoptotic effect of cGMP in cultured astrocytes. Inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J. Biol. Chem. 276, 48 09348 099.
  • Tanaka S., Takehashi M., Iida S., Kitajima T., Kamanaka Y., Stedeford T., Banasik M. and Ueda K. (2005) Mitochondrial impairment induced by poly (ADP-ribose) polymerase-1 activation in cortical neurons after oxygen and glucose deprivation. J. Neurochem. 95, 179190.
  • Tapodi A., Debreceni B., Hanto K., Bognar Z., Wittmann I., Gallyas F. J., Varbiro G. and Sumegi B. (2005) Pivotal role of Akt activation in mitochondrial protection and cell survival by poly (ADP-ribose) polymerase-1 inhibition in oxidative stress. J. Biol. Chem. 280, 35 76735 777.
  • Tatton W. H. and Olanow C. W. (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim. Biophys. Acta 1410, 195213.
  • Trimmer B. A., Aprille J. R., Dudzinski D. M., Lagace C. J., Lewis S. M., Michel T., Qazi S. and Zayas R. M. (2001) Nitric oxide and the control of firefly flashing. Science 292, 24862488.
  • Vásquez-Vivar J., Hogg N., Martasek P., Karoui H., Pritchard K. A. and Kalyanaraman B. (1999) Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase. J. Biol. Chem. 274, 2673626742.
  • Virag L., Salzman A. L. and Szabo C. (1998) Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J. Immunol. 161, 37533759.
  • Walz W. and Mukerji S. (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1, 366370.
  • Wang X. F. and Cynader M. S. (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J. Neurochem. 74, 14341442.
  • Wang G. J., Randall R. D. and Thayer S. A. (1994) Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J. Neurophysiol. 72, 25632569.
  • White R. J. and Reynolds I. J. (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxic exposure. J. Neurosci. 16, 56885697.
  • Whiteman M., Armstrong J. S., Chu S. H., Jia-Ling S., Wong B. S., Cheung N. S., Halliwell B. and Moore P. K. (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem. 90, 765768.
  • Wink D. A., Cook J. A., Pacelli R., DeGraff W., Gamson J., Liebmann J., Krishna M. C. and Mitchell J. B. (1996) The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: a direct correlation between nitric oxide formation and protection. Arch. Biochem. Biophys. 331, 241248.
  • Wu D. C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., Choi D. K., Ischiropoulos H. and Przedborski S. (2002) Blockade of microglial activation is neuroprotective in the l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 17631771.
  • Xia Y., Roman I. J., Masters B. S. and Zweier J. L. (1998) Inducible nitric oxide synthase generates superoxide from the reductase domain. J. Biol. Chem. 273, 22 63522 639.
  • Xu W., Liu L., Charles I. G. and Moncada S. (2004) Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat. Cell Biol. 6, 11291134.
  • Yu J., DeMuinck E. D., Zhuang Z., Drinane M., Kauser K., Rubanyi G. M., Qian H. S., Murata T., Escalante B. and Sessa W. C. (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc. Natl Acad. Sci. USA 102, 10 99911 004.
  • Zhang J., Dawson V. L., Dawson T. M. and Snyder S. H. (1994) Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263, 687689.
  • Zhang Y., Wang H., Li J., Jimenez D. A., Levitan E. S., Aizenman E. and Rosenberg P. A. (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J. Neurosci. 24, 10 61610 627.