SEARCH

SEARCH BY CITATION

References

  • Asante E. A., Li Y. G., Gowland I., Jefferys J. G. and Collinge J. (2004) Pathogenic human prion protein rescues PrP null phenotype in transgenic mice. Neurosci. Lett. 360, 3336.
  • Avery R. B. and Johnston D. (1996) Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons. J. Neurosci. 16, 55675582.
  • Blair L. A., Bence-Hanulec K. K., Mehta S., Franke T., Kaplan D. and Marshall J. (1999) Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. J. Neurosci. 19, 19401951.
  • Bowden S. E., Fletcher S., Loane D. J. and Marrion N. V. (2001) Somatic colocalization of rat SK1 and D class (Ca (v), 1.2), 1–type calcium channels in rat CA1 hippocampal pyramidal neurons. J Neurosci. 21, RC175.
  • Brini M., Miuzzo M., Pierobon N., Negro A. and Sorgato M. C. (2005) The prion protein and its paralogue Doppel affect calcium signaling in Chinese hamster ovary cells. Mol Biol. Cell 16, 27992808.
  • Brown D. R., Qin K., Herms J. et al. (1997a) The cellular prion protein binds copper in vivo. Nature 390, 684687.
  • Brown D. R., Schulz-Schaeffer W. J., Schmidt B. and Kretzschmar H. A. (1997b) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 146, 104112.
  • Bueler H., Fischer M., Lang Y., Bluethmann H., Lipp H. P., DeArmond S. J., Prusiner S. B., Aguet M. and Weissmann C. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577582.
  • Carleton A., Tremblay P., Vincent J. D. and Lledo P. M. (2001) Dose-dependent, prion protein (PrP)-mediated facilitation of excitatory synaptic transmission in the mouse hippocampus. Pflugers Arch. 442, 223229.
  • Catterall W. A. (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev Biol. 16, 521555.
  • Chiarini L. B., Freitas A. R., Zanata S. M., Brentani R. R., Martins V. R. and Linden R. (2002) Cellular prion protein transduces neuroprotective signals. 18 EMBO J. 21, 33173326.
  • Cloues R. K., Tavalin S. J. and Marrion N. V. (1997) Beta-adrenergic stimulation selectively inhibits long-lasting 1-type calcium channel facilitation in hippocampal pyramidal neurons. J. Neurosci. 17, 64936503.
  • Colling S. B., Collinge J. and Jefferys J. G. R. (1996) Hippocampal slices from prion protein null mice: disrupted Ca2+ activated K+ currents. Neurosci. Lett. 209, 4952.
  • Colling S. B., Khana M., Collinge J. and Jefferys J. G. R. (1997) Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res. 755, 2835.
  • Collinge J., Whittington M. A., Sidle K. C. L., Smith C. J., Palmer M. S., Clarke A. R. and Jefferys J. G. R. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295297.
  • Criado J. R., Sanchez-Alavez. M., Conti B. et al. (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol. Dis 19, 255265.
  • Dalton S., Takahashi S. X., Miriyala J. and Colecraft H. M. (2005) A single CaVbeta can reconstitute both trafficking and macroscopic conductance of voltage-dependent calcium channels. J. Physiol. 567, 757769.
  • Eilers J., Callewaert G., Armstrong C. and Konnerth A. (1995) Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. U S A 92, 10 27210 276.
  • Fournier J. G., Escaig-Haye F. and Grigoriev V. (2000) Ultrastructural localization of prion proteins: Physiological and pathological implications. Microsc Res. Tech 50, 7688.
  • Herms J., Korte S., Gall S., Schneider I., Dunker S. and Kretzschmar H. A. (2000) Altered intracellular calcium homeostasis in cerebellar granule cells of prion protein-deficient mice. J. Neurochem. 75, 14871492.
  • Herms J., Tings T., Dunker S. and Kretzschmar H. A. (2001) Prion Protein Affects Ca (2+)-Activated K (+) Currents in Cerebellar Purkinje Cells. Neurobiol. Dis 8, 324330.
  • Herms J., Tings T., Gall S., Madlung A., Giese A., Siebert H., Schurmann P., Windl O., Brose N. and Kretzschmar H. (1999) Evidence of presynaptic location and function of the prion protein. J. Neurosci. 19, 88668875.
  • Hocherman S. D., Werman R. and Yarom Y. (1992) An analysis of the long-lasting after-hyperpolarization of guinea-pig vagal motoneurones. J. Physiol. 456, 325349.
  • Horiuchi M., Yamazaki N., Ikeda T., Ishiguro N. and Shinagawa M. (1995) A cellular form of prion protein (PrPC) exists in many non-neuronal tissues of sheep. J. General Virol. 76, 25832587.
  • Kim B. H., Lee H. G., Choi J. K., Kim J. I., Choi E. K., Carp R. I. and Kim Y. S. (2004) The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Mol Brain Res. 124, 4050.
  • Korte S., Vassallo N., Kramer M. L., Kretzschmar H. A. and Herms J. (2003) Modulation of 1-type voltage-gated calcium channels by recombinant prion protein. J. Neurochem. 87, 10371042.
  • Krause M., Offermanns S., Stocker M. and Pedarzani P. (2002) Functional specificity of G alpha q and G alpha 11 in the cholinergic and glutamatergic modulation of potassium currents and excitability in hippocampal neurons. J. Neurosci. 22, 666673.
  • Krebs B., Dorner-Ciossek C., Schmalzbauer R., Vassallo N., Herms J. and Kretzschmar H. A. (2006) Prion protein induced signaling cascades in monocytes. Biochem. Biophys. Res. Commun 340, 1322.
  • Lancaster B. and Nicoll R. A. (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol. 389, 187203.
  • Lancaster B. and Zucker R. S. (1994) Photolytic manipulation of Ca2+ and the time course of slow, Ca (2+)-activated K+ current in rat hippocampal neurones. J. Physiol. 475, 229239.
  • Lasser-Ross N., Ross W. N. and Yarom Y. (1997) Activity-dependent [Ca2+]i changes in guinea pig vagal motoneurons: relationship to the slow afterhyperpolarization. J. Neurophysiol. 78, 825834.
  • Li A. and Harris D. A. (2005) Mammalian prion protein suppresses Bax-induced cell death in yeast. J. Biol. Chem. 280, 17 43017 434.
  • Mallucci G. R., Ratte S., Asante E. A., Linehan J., Gowland I., Jefferys J. G. and Collinge J. (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202210.
  • Manson J. C., Hope J., Clarke A. R., Johnston A., Black C. and MacLeod N. (1995) PrP gene dosage and long term potentiation. Neurodegeneration 4, 113115.
  • Marrion N. V. and Lima P. A. (2005) Continued calcium entry underlies the time-course of slow afterhyperpolarisation in rat CA1 hippocampal pyramidal neurons. Soc. Neurosci. Abstract 776, 16.
  • McLennan N. F., Brennan P. M., McNeill A. et al. (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am. J. Pathol 165, 227235.
  • Moore K. A., Cohen A. S., Kao J. P. and Weinreich D. (1998) Ca2+-induced Ca2+ release mediates a slow post-spike hyperpolarization in rabbit vagal afferent neurons. J. Neurophysiol. 79, 688694.
  • Moosmang S., Schulla V., Welling A., Feil R., Feil S., Wegener J. W., Hofmann F. and Klugbauer N. (2003) Dominant role of smooth muscle 1-type calcium channel Cav1.2 for blood pressure regulation. EMBO J. 22, 60276034.
  • Nishimura T., Sakudo A., Nakamura I. et al. (2004) Cellular prion protein regulates intracellular hydrogen peroxide level and prevents copper-induced apoptosis. Biochem. Biophys. Res. Commun 323, 218222.
  • Roucou X., Giannopoulos P. N., Zhang Y., Jodoin J., Goodyer C. G. and LeBlanc A. (2005) Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ 12, 783795.
  • Sah P. (1993) Kinetic properties of a slow apamin-insensitive Ca (2+)-activated K+ current in guinea pig vagal neurons. J. Neurophysiol. 69, 361366.
  • Sah P. and Clements J. D. (1999) Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons. J. Neurosci. 19, 36573664.
  • Sah P. and McLachlan E. M. (1991) Ca (2+)-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca (2+)-activated Ca2+ release. Neuron 7, 257264.
  • Sandberg M. K., Wallen P., Wikstrom M. A. and Kristensson K. (2004) Scrapie-infected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (Ca (v), 2.2) which is ameliorated by quinacrine treatment. Neurobiol. Dis 15, 143151.
  • Santuccione A., Sytnyk V., Leshchyns'ka I. and Schachner M. (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol. 169, 341354.
  • Schneider B., Mutel V., Pietri M., Ermonval M., Mouillet-Richard S. and Kellermann O. (2003) NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc. Natl Acad. Sci. United States America 100, 13 32613 331.
  • Schwindt P. C., Spain W. J. and Crill W. E. (1992) Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J. Neurophysiol. 67, 216226.
  • Spudich A., Frigg R., Kilic E., Kilic U., Oesch B., Raeber A., Bassetti C. L. and Hermann D. M. (2005) Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol. Dis 20, 442449.
  • Stocker M., Hirzel K., D'hoedt D. and Pedarzani P. (2004) Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43, 933949.
  • Tanabe M., Gahwiler B. H. and Gerber U. (1998) L-Type Ca2+ channels mediate the slow Ca2+-dependent afterhyperpolarization current in rat CA3 pyramidal cells in vitro. J. Neurophysiol. 80, 22682273.
  • Vassallo N., Herms J., Behrens C., Krebs B., Saeki K., Onodera T., Windl O. and Kretzschmar H. A. (2005) Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun 332, 7582.
  • Viard P., Butcher A. J., Halet G., Davies A., Nurnberg B., Heblich F. and Dolphin A. C. (2004) PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nature Neuroscience 7, 939946.
  • Weise J., Sandau R., Schwarting S., Crome O., Wrede A., Schulz-Schaeffer W., Zerr I. and Bahr M. (2006) Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37, 12961300.
  • Westenbroek R. E., Ahlijanian M. K. and Catterall W. A. (1990) Clustering of 1-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281284.
  • Whatley S. A., Powell J. F., Politopoulou G., Campbell I. C., Brammer M. J. and Percy N. S. (1995) Regulation of intracellular free calcium levels by the cellular prion protein. Neuroreport 6, 23332337.
  • Zhang L. and McBain C. J. (1995) Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J. Physiol. 488, 661672.