SEARCH

SEARCH BY CITATION

References

  • Acuña-Castroviejo D., Escames G., Macías M., Muñoz-Hoyos A., Molina-Carballo A., Arauzo M., Montes R. and Vives F. (1995) Cell protective role of melatonin in the brain. J. Pineal Res. 19, 5763.
  • Acuña-Castroviejo D., Martín M., Macías M., Escames G., León J., Khaldy H. and Reiter R. J. (2001) Melatonin, mitochondria and cellular bioenergetics. J. Pineal Res. 30, 6574.
  • Benitez-King G., Huerto-Delgadillo L. and Anton-Tay F. (1993) Binding of 3H-melatonin to calmodulin. Life Sci. 53, 201207.
  • Boasso A., Herbeuval J. P., Hardy A. W., Winkler C. and Shearer G. M. (2005) Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood 105, 15741581.
  • Bredt D. S. and Snyder S. H. (1989) NO mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl Acad. Sci. USA 86, 90309033.
  • Camacho E., León J., Carrión M. D., Entrena A., Escames G., Khaldy H., Acuña-Castroviejo D., Gallo M. A. and Espinosa A. (2002) Inhibition of nNOS activity in rat brain by synthetic kynurenines: Structure-activity dependence. J. Med. Chem. 45, 263274.
  • Camacho E., León J., Entrena A., Velasco G., Carrión M. D., Escames G., Vivó A., Acuña-Castroviejo D., Gallo M. A. and Espinosa A. (2004) 4,5-dihydro-1H-pyrazole derivatives with inhibitory nNOS activity in rat brain: Synthesis and structure-activity relationship. J. Med. Chem. 47, 56415650.
  • Chiarugi A., Sbarba P. D., Paccagnini A., Donnini S., Filippi S. and Moroni F. (2000) Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by inteferon-(-activated macrophages. J. Leukoc. Biol. 68, 260266.
  • Costa E. J. X., López R. H. and Lamy-Freund M. T. (1995) Permeability of pure lipid bilayers to melatonin. J. Pineal Res. 19, 123126.
  • Dubocovich M. L. and Markowska M. (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27, 101110.
  • Entrena A., Camacho E., Carrión M. D. et al. (2005) Kynurenamines as neural nitric oxide synthase inhibitors. J. Med. Chem. 48, 81748181.
  • Escames G., Macías M., León J., García J. J., Khaldy H., Martín M., Vives F. and Acuña-Castroviejo D. (2001) Calcium-dependent effects of melatonin inhibition of glutamatergic response in rat striatum. J. Neuroendocrinol. 13, 459466.
  • Escames G., León J., López L. C. and Acuña-Castroviejo D. (2004) Mechanisms of the NMDA receptor inhibition by melatonin in the rat brain striatum. J. Neuroendocrinol. 16, 929935.
  • Ferry G., Ubeaud C., Lambert P. H. et al. (2005) Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3 dioxygenase and myeloperoxidase. Biochem. J. 388, 205215.
  • Garthwaite J., Garthwaite G., Palmer R. M. J. and Moncada S. (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol. 172, 413416.
  • Grant R. and Kapoor V. (2003) Inhibition of indoleamine 2,3 dioxygenase activity in IFN-stimulated astroglioma cells decreases intracellular NAD levels. Biochem. Pharmacol. 66, 10331036.
  • Guenther A. L., Schmidt S. L., Laatsch H., Fotso S., Ness H., Ressmeyer A. R., Poeggeler B. and Hardeland R. (2005) Reactions of the melatonin metabolite AMK (N1-acetyl-5-methxykynuramine) with reactive nitrogen species: formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK. J. Pineal Res. 39, 1260.
  • Hardeland R., Pandi-Perumal S. R. and Cardinali D. P. (2005) Melatonin. Int. J. Biochem. Cell Biol. 38, 313316.
  • Hayaishi O. (1976) Properties and function of indoleamine 2,3-dioxygenase. J. Biochem. 79, 13P21P.
  • Hirata F., Hayaishi O., Tokuyama T. and Seno S. (1974) In vitro and in vivo formation of two new metabolites of melatonin. J. Biol. Chem. 249, 13111313.
  • Lardone P. J., Alvarez-García O., Carrillo-Vico A., Vega-Naredo I., Caballero B., Guerrero J. M. and Coto-Montes A. (2006) Inverse correlation between endogenous melatonin levels and oxidative damage in some tissues of SAM mice. J. Pineal Res. 40, 153157.
  • León J., Vives F., Gómez I., Camacho E., Gallo M. A., Espinosa A., Escames G. and Acuña-Castroviejo D. (1998) Modulation of rat striatal glutamatergic response in search for new neuroprotective agents: evaluation of melatonin and some kynurenine derivatives. Brain Res. Bull. 45, 525530.
  • León J., Macías M., Escames G., Camacho E., Khaldy H., Martín M., Espinosa A., Gallo M. A. and Acuña-Castroviejo D. (2000) Structure-related inhibition of calmodulin-dependent nNOS activity by melatonin and synthetic kynurenines. Mol. Pharmacol. 58, 967975.
  • Lowry O. H., Rosenbrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265275.
  • Macías M., Escames G., León J., Coto-Montes A., Sbihi Y., Osuna A. and Acuña-Castroviejo D. (2003) Calreticulin-melatonin. An unexpected relationship. Eur. J. Biochem. 270, 832840.
  • Mayo J. C., Sainz R. M., Tan D. X., Hardeland R., León J., Rodríguez C. and Reiter R. J. (2005) Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and (N1-acetyl-5-methxykynuramine (AMK), in macrophages. J. Neuroimmunol. 165, 139149.
  • Molnar A., Liliom K., Orosz F., Vertessy B. G. and Ovadi J. (1995) Anti-calmodulin potency of indol alkaloids in in vitro systems. Eur. J. Pharmacol. 291, 7382.
  • Muñoz-Hoyos A., Molina-Carballo A., Rodríguez-Cabezas T., Uberos-Fernández J., Ruiz-Cosano J. A. and Acuña-Castroviejo D. (1997) Relationships between methoxyindole and kynurenine pathway metabolites in plasma and urine in children suffering from febrile and epileptic seizures. Clin. Endocrinol. 47, 667677.
  • Reiter R. J. (1991a) Melatonin: that ubiquitously acting pineal hormone. New Physiol. Sci. 6, 223227.
  • Reiter R. J. (1991b) Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12, 151–180.
  • Reiter R. J., Tan D. X., Manchester L. C., Lopez-Burillo S., Sainz R. M. and Mayo J. C. (2003) Melatonin: detoxification of oxygen and nitrogen-based toxic reactants. Adv. Exp. Med. Biol. 527, 539548.
  • Reiter R. J., Tan D. X. and Maldonado M. D. (2005) Melatonin as an antioxidant: physiology versus pharmacology. J. Pineal Res. 39, 215216.
  • Ressmeyer A. R., Mayo J. C., Zelosko V., Sainz R. M., Tan D. X., Poeggeler B., Antolin I., Zsizsik B. K., Reiter R. J. and Hardeland R. (2003) Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox. Report 8, 205213.
  • Roy E. J., Takikawa O., Kranz D. M., Brown A. R. and Thomas D. L. (2005) Neuronal localization of indoleamine 2,3-dioxygenase in mice. Neurosci. Lett. 387, 9599.
  • Silva S. O., Ximenes V. F., Catalani L. H. and Campa A. (2000) Myeloperoxidase-catalyzed oxidation of melatonin by activated neutrophils. Biochem. Biophys. Res. Commun. 279, 657662.
  • Silva S. O., Rodrigues M. R., Carvalho S. R., Catalani L. H., Campa A. and Ximenes V. F. (2004) Oxidation of melatonin and its catabolites, N1-acetyl-N2-formyl-5-methoxykynuramine and N1-acetyl-5-methxykynuramine, by activated leukocytes. J. Pineal Res. 37, 171175.
  • Silva S. O., Ximenes V. F., Livramento J. A., Catalani L. H. and Campa A. (2005) High concentrations of the melatonin metabolite, N1-acetyl-N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J. Pineal Res. 39, 302306.
  • Stefulj J., Hortner M., Ghosh M., Schauenstein K., Rinner I., Wolfler A., Semmler J. and Liebmann P. M. (2001) Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J. Pineal Res. 30, 243247.
  • Takikawa O., Yoshida R., Kido R. and Hayaishi O. (1986) Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J. Biol. Chem. 261, 36483653.
  • Tan D. X., Manchester L. C., Burkhardt S. et al. (2001) N1-acetyl-N2-formyl-5- methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 15, 22942296.
  • Tan D. X., Reiter R. J., Manchester L. C., Yan M. T., El-Sawl M., Sainz R. M., Mayo J. C., Kohen R., Allegra M. J. and Hardeland R. (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2, 1197.
  • Tan D. X., Manchester L. C., Reiter R. J., Plummer B. F., Limson J., Weintraub S. T. and Qi W. (2000a) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolite pathway of melatonin biotransformation. Free Radic. Biol. Med. 29, 11771185.
  • Tan D. X., Manchester L. C., Reiter R. J., Qi W. B., Karbownik M. and Calvo J. R. (2000b) Significance of melatonin in antioxidative defense system: reactions and products. Biol. Signals Recep. 9, 137159.
  • Tan D. X., Manchester L. C., Sainz R. M., Mayo J. C., León J., Hardeland R., Poeggeler B. and Reiter R. J. (2005a) Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin. J. Pineal Res. 39, 185194.
  • Tan D. X., Manchester L. C., Sainz R. M., Mayo J. C., León J. and Reiter R. J. (2005b) Physiological ischemia-reperfusion phenomena and their relation to endogenous melatonin production: a hypothesis. Endocrine 27, 149158.
  • Taylor M. W. and Feng C. S. (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 5, 25162522.
  • Wiesenberg I., Missbach M., Kahlen J. P., Schrader M. and Carlberg C. (1995) Transcriptional activation of the nuclear receptor RZR′ by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucl. Acids Res. 23, 327333.