SEARCH

SEARCH BY CITATION

References

  • Aureli T., Di Cocco M. E., Calvani M. and Conti F. (1997) The entry of [1–13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy. Brain Res. 765, 218227.
  • Berl S., Takagaki G., Clarke D. D. and Waelsch H. (1962) Carbon dioxide fixation in the brain. J. Biol. Chem. 237, 25702573.
  • Blüml S. (1999) In vivo quantitation of cerebral metabolites concentration using natural abundance 13C MRS at 1.5 T. J. Magn. Reson. 136, 219225.
  • Blüml S., Moreno A., Hwang J.-H. and Ross B. D. (2001) 1-13C glucose magnetic resonance spectroscopy of pediatric and adult brain disorders. NMR Biomed. 14, 1932.
  • Bouzier A. K., Thiaudiere E., Biran M., Rouland R., Canioni P. and Merle M. (2000) The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J. Neurochem. 75, 480486.
  • Cerdan S., Künnecke B. and Seelig J. (1990) Cerebral metabolism of (1,2-(13) C2) acetate as detected by in vivo and in vitro 13C NMR. J. Biol. Chem. 265, 12 91612 926.
  • Cheng S. C. (1971) CO2 fixation in the nervous tissue. Int. Rev. Neurobiol. 14, 125157.
  • Cheng S.-C., Nakamura R. and Waelsch H. (1967) Relative contribution of carbon dioxide fixation and acetyl CoA pathways in two nervous tissues. Nature 216, 928929.
  • Chhina N., Kuestermann E., Halliday J., Simpson L. J., Macdonald I. A., Bachelard H. S. and Morris P. G. (2001) Measurement of human tricarboxylic acid cycle rates during visual activation by (13) C magnetic resonance spectroscopy. J. Neurosci. Res. 66, 737746.
  • Cline G. W., Petersen K. F., Krssak M., Shen J., Hundal R. S., Trajanoski Z., Inzucchi S., Dresner A., Rothman D. L. and Shulman G. I. (1999) Glucose transport is rate controlling for insulin stimulated muscle glycogen synthesis in type 2 diabetes. N. Engl. J. Med. 341, 240246.
  • Cooper A. J. L. and Plum F. (1987) Biochemistry and physiology of brain ammonia. Physiol. Rev. 67, 440519.
  • Csernansky J. G., Bardgett M. E., Sheline Y. I., Morris J. C. and Olney J. W. (1996) CSF excitatory amino acids and severity of illness in Alzheimer's disease. Neurology 46, 17151720.
  • Danbolt N. C., Storm-Mathisen J. and Kanner B. I. (1992) An [Na++K+]-coupled 1-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51, 295310.
  • During M. J. and Spencer D. D. (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341, 16071613.
  • Dzubow L. M. and Garfinkel D. (1970) A simulation study of brain compartments. II. Atom-by-Atom simulation of the metabolism of specifically labeled glucose and acetate. Brain Res. 23, 407417.
  • Erecinska M. and Silver I. A. (1990) Metabolism and role of glutamate in mammalian brain. Prog. Neurobiol. 35, 245296.
  • De Graaf R. A., Mason G. F., Patel A. B., Rothman D. L. and Behar K. L. (2004) Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc. Natl Acad. Sci. U S A 101, 12 70012 705.
  • Grill V., Bjorkman O., Gutniak M. and Lindqvist M. (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metab. Clin. Exp. Res. 41, 2832.
  • Gruetter R., Novotny E. J., Boulware S. D., Mason G. F., Rothman D. L., Shulman G. I., Prichard J. W. and Shulman R. G. (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1–13C]glucose. J. Neurochem. 63, 13771385.
  • Gruetter R., Seaquist E. R., Kim S. and Ugurbil K. (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev. Neurosci. 20, 380388.
  • Gruetter R., Seaquist E. R. and Ugurbil K. (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am. J. Physiol. Endocrinol. Metab. 281, E100E112.
  • Gundersen V., Fonnum F., Ottersen O. P. and Storm-Mathisen J. (2001) Redistribution of neuroactive amino acids in hippocampus and striatum during hypoglycemia: a quantitative immunogold study. J. Cereb. Blood Flow Metab. 21, 4151.
  • Haberg A., Hong Q., Bakken I. J., Sande L. M., White L. R., Haraldseth O. and Unsgård G. (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev. Neurosci. 20, 389398.
  • Hassel B. (2000) Carboxylation and anaplerosis in neurons and glia. Mol. Neurobiol. 22, 2140.
  • Hassel B. and Sonnewald U. (1995) Glial formation of pyruvate and lactate from TCA cyel intermediates: implications for the inactivation of transmitter amino acids? J. Neurochem. 65, 22272234.
  • Hassel B., Sonnewald U. and Fonnum F. (1995) Glial–neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopic study. J. Neurochem. 64, 27732782.
  • Hassel B., Brathe A. and Petersen D. (2002) Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate. J. Neurochem. 82, 410419.
  • Hawkins R. A. and Mans A. M. (1983) Intermediary metabolism of carboyhdrates and other fuels. I. Biochem. J. 122, 259294.
  • Heiss W.-D., Pawlik G., Herholz K., Wagner R., Göldner H. and Weinhard K. (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. J. Cereb. Blood Flow Metab. 4, 212223.
  • Hertz L. and Schousboe A. (1986) Role of astrocytes in compartmentation of amino acid and energy metabolism, in Astrocytes, Vol. 2 (FedoroffS. and VernadakisA., eds), pp. 179208. Academic Press, New York.
  • Hertz L., Dringen R., Schousboe A. and Robinson S. R. (1999) Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57, 417428.
  • Hetherington H. P., Pan J. W., Mason G. F., Adams O., Vaughn M. J., Twieg D. B. and Pohost G. M. (1996) Quantitative high-resolution spectroscopic imaging of human brain in vivo at 4.1T using image segmentation. Magn. Reson. Med. 36, 2129.
  • Hogstad S., Svenneby G., Torgner I. A., Kvamme E., Hertz L. S. A. (1988) Glutaminase in neurons and astrocytes cultured from mouse brain: kinetic properties and effects of phosphate, glutamate, and ammonia. Neurochem. Res. 13, 383388.
  • Kanamatsu T. and Tsukada Y. (1999) Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C]glucose with or without ammonium acetate. Brain Res. 841, 1119.
  • Kanamori K., Ross B. D. and Kondrat R. W. (2002) Glial uptake of neurotransmitter glutamate from the extracellular fluid studied in vivo by microdialysis and 13C NMR. J. Neurochem. 83, 682695.
  • Kondrat R. W., Kanamori K. and Ross B. D. (2002) In vivo microdialysis and gas-chromatography/mass-spectrometry for 13C-enrichment measurement of extracellular glutamate in rat brain. J. Neurosci. Meth. 120, 179192.
  • Kreis R. Ernst T. and Ross B. D. (1993) Absolute quantitation of water and metabolites in human brain. II. Metabolite concentrations. J. Magn. Reson. Series B 102, 919.
  • Künnecke B., Cerdan S. and Seelig J. (1993) Cerebral metabolism of [1,2–13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6, 264277.
  • Lapidot A. and Gopher A. (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J. Biol. Chem. 269, 27 19827 208.
  • Lebon V., Petersen K. F., Cline G. W., Shen J., Mason G. F., Dufour S., Behar K. L., Shulman G. I. and Rothman D. L. (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. 22, 15231531.
  • Lebrun-Grandié P., Baron J.-C., Soussaline F., Loch'h C., Sastre J. and Bousser M.-G. (1983) Coupling between regional blood flow and oxygen utilization in the normal brain: a study with positron emission tomography and oxygen 15. Arch. Neurol. 40, 230236.
  • Lieth E., LaNoue K. F., Berkich D. A., Xu B., Ratz M., Taylor C. and Hutson S. M. (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J. Neurochem. 76, 17121723.
  • Lying-Tunell U., Lindblad B. S., Malmlund H. O. and Persson B. (1981) Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. Acta Neurol. Scand. 63, 337350.
  • Maragakis N. J. and Rothstein J. D. (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol. Dis. 15, 461473.
  • Martinez-Hernandez A., Bell K. P. and Norenberg M. D. (1976) Glutamine synthetase: glial localization in brain. Science 195, 13561358.
  • Mason G. F. and Rothman D. L. (2002) Graded image segmentation of brain tissue in the presence of inhomogeneous radio frequency fields. Magn Reson Imaging 20, 431436.
  • Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G. and Novotny E. J. (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J. Cereb. Blood Flow Metab. 15, 1225.
  • Mason G. F., Pan J. W., Chu W. J., Newcomer B. R., Zhang Y., Orr R. and Hetherington H. P. (1999) Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by 1H-[13C] magnetic resonance spectroscopy at 4.1T. J. Cereb. Blood Flow Metab. 19, 11791188.
  • Mason G. F., Petersen K. F., De Graaf R. A., Kanamatsu T., Otsuki T. and Rothman D. L. (2003) A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1–13C]glucose. Brain Res. Prot. 10, 181190.
  • McLennan H. (1976) The autoradiographic localization of L-[3H]glutamate in rat brain tissue. Brain Res. 115, 139144.
  • Merle M., Bouzier-Sore A.-K. and Canioni P. (2002) Time-dependence of the contribution of pyruvate carboxylase versus pyruvate dehydrogenase to rat brain glutamine labelling from [1-13C]glucose metabolism. J. Neurochem. 82, 4757.
  • Michaelis T., Merboldt K. D., Bruhn H., Hanicke W. and Frahm J. (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiol. 187, 219227.
  • Ottersen O. P., Zhang N. and Walberg F. (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience. 46, 519534.
  • Oz G., Berkich D. A., Henry P. G., Xu Y., LaNoue K., Hutson S. M. and Gruetter R. (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24, 11 27311 279.
  • Patel A. B., De Graaf R. A., Mason G. F., Kanamatsu T., Rothman D. L., Shulman R. G. and Behar K. L. (2004) Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J. Cerebral Blood Flow Metabolism 24, 972985.
  • Patel M. S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J. Neurochem. 22, 717724.
  • Perry E., Gibson P. H., Blessed G., Perry R. H. and Tomlinson B. E. (1977) Neurotransmitter abnormalities in senile dementia. J. Neurol. Sci. 34, 247265.
  • Perry T. L., Haworth J. C. and Robinson B. H. (1985) Brain amino acid abnormalities in pyruvate carboxylase deficiency. J. Inher Metab Dis 8, 6366.
  • Petroff O. A. C., Spencer D. D., Alger J. R. and Prichard J. W. (1989) High field magnetic resonance spectroscopy of human brain cerebrum obtained during surgery for epilepsy. Neurology 39, 11971202.
  • Petroff O. A. C., Errante L. D., Rothman D. L., Kim J. H. and Spencer D. D. (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43, 703710.
  • Shank R. P., Bennet G. S., Freytag S. D. and Campbell G. L. (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329, 364367.
  • Shank R. P., Leo G. C. and Zielke H. R. (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1–13C]glucose metabolism. J. Neurochem. 61, 315323.
  • Shen J., Rycyna R. E. and Rothman D. L. (1997) Improvements on an in vivo automatic shimming method [FASTERMAP]. Magn. Reson. Med. 38, 834839.
  • Shen J., Petersen K. F., Behar K. L., Brown P., Nixon T. W., Mason G. F., Petroff O. A., Shulman G. I., Shulman R. G. and Rothman D. L. (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc. Natl Acad. Sci. U S A 96, 82358240.
  • Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L. and Shulman R. G. (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl Acad. Sci. U S A 95, 316321.
  • Sibson N. R., Mason G. F., Shen J. G. W. C., Herskovits A. Z., Wall J. E., Behar K. L., Rothman D. L. and Shulman R. G. (2001) In vivo (13) C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during hyperammonemia. J. Neurochem. 76, 975989.
  • Siesjo B. K. (1978) Brain Energy Metabolism. Wiley, New York.
  • Sonnewald U., Westergaard N., Jones P., Taylor A., Bachelard H. S. and Schousboe A. (1996) Metabolism of [U-13C]glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J. Neurochem. 67, 25662572.
  • Strauss G. I., Knudsen G. M., Kondrup J., Moller K. and Larsen F. S. (2001) Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure. Gastroenterology 121, 11091119.
  • Tanaka K., Watase K., Manabe T. et al. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 16991702.
  • Van den Berg C. J. and Garfinkel D. (1971) A simulation study of brain compartments. Biochem. J. 123, 211218.
  • Waelsch H., Berl S., Rossi C. A., Clarke D. D. and Purpura D. P. (1964) Quantitative aspects of CO2 fixation in mammalian brain in vivo. J. Neurochem. 41, 14841487.
  • Wang G.-J., Volkow N. D., Wolf A. P., Brodie J. D. and Hitzemann R. J. (1994) Intersubject variability of brain glucose metabolic measurements in young normal males. J. Nucl. Med. 35, 14571466.
  • Xu Y., Öz G., LaNoue K. F., Keiger C. J., Berkich D. A., Gruetter R. and Hutson S. M. (2004) Whole-brain glutamate metabolism evaluated by steady-state kinetics using a double-isotope procedure: effects of gabapentin. J. Neurochem. 90, 11041116.
  • Yu A. C., Hertz D. L. and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 14841487.
  • Yudkoff M., Nissim I., Daikhin Y., Lin Z., Nelson D., Pleasure D. and Erecinska M. (1993) Brain glutamate metabolism: neuronal-astroglial relationships. Dev. Neurosci. 15, 343350.