SEARCH

SEARCH BY CITATION

References

  • Adachi T., Kar S., Wang M. and Carr B. I. (2002) Transient and sustained ERK phosphorylation and nuclear translocation in growth control. J. Cell Physiol. 192, 151159.
  • Barber J. R., Sassone-Corsi P. and Verma I. M. (1987) Proto-oncogene fos: factors affecting expression and covalent modification of the gene product. Ann. N. Y. Acad. Sci. 511, 117130.
  • Borioli G. A., Caputto B. L. and Maggio B. (2004) Phospholipase activity is modulated by c-Fos through substrate expansion and hyperpolarization. FEBS Lett. 570, 8286.
  • Borioli G. A., Caputto B. L. and Maggio B. (2005) c-Fos and phosphatidylinositol-4,5-bisphosphate reciprocally reorganize in mixed monolayers. Biochim. Biophys. Acta 1668, 4152.
  • Boss V., Roback J. D., Young A. N., Roback L. J., Weisenhorn D. M., Medina-Flores R. and Wainer B. H. (2001) Nerve growth factor, but not epidermal growth factor, increases Fra-2 expression and alters Fra-2/JunD binding to AP-1 and CREB binding elements in pheochromocytoma (PC12) cells. J. Neurosci. 21, 1826.
  • Bottazzi M. E., Zhu X., Bohmer R. M. and Assoian R. K. (1999) Regulation of p21(cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. J. Cell Biol. 146, 12551264.
  • Chao M. V. (1992) Growth factor signaling: where is the specificity? Cell 68, 995997.
  • Chen R.-H., Abate C. and Blenis J. (1993) Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl Acad. Sci. USA 90, 1095210956.
  • Chen R. H., Juo P. C., Curran T. and Blenis J. (1996) Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene 12, 14931502.
  • Cohen D. R. and Curran T. (1989) The structure and function of the fos proto-oncogene. Crit. Rev. Oncog. 1, 6588.
  • Cosgaya J. M. and Aranda A. (1999) The ras oncogene inhibits growth factor inducibility of early response genes, and promotes selectively expression of NGFI-A in a PC12 cell line. FEBS Lett. 445, 329332.
  • Cowley S., Paterson H., Kemp P. and Marshall C. J. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH3T3 cells. Cell 77, 841852.
  • D'Arcangelo G. and Halegoua S. (1993) A branched signaling pathway for nerve growth factor is revealed by Src-, Ras-, and Raf-mediated gene inductions. Mol. Cell Biol. 13, 31463155.
  • Dimitri C. A., Dowdle W., MacKeigan J. P., Blenis J. and Murphy L. O. (2005) Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr. Biol. 15, 13191324.
  • Ferrara P., Andermarcher E., Bossis G., Acquaviva C., Brockly F., Jariel-Encontre I. and Piechaczyk M. (2003) The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression. Oncogene 22, 14611474.
  • Garcia J., De Gunzburg J., Eychene A., Gisselbrecht S. and Porteu F. (2001) Thrombopoietin-mediated sustained activation of extracellular signal-regulated kinase in UT7-Mpl cells requires both Ras-Raf-1- and Rap1-B- Raf-dependent pathways. Mol. Cell Biol. 21, 26592670.
  • Gil G. A., Bussolino D. F., Portal M. M., Pecchio A. A., Renner M. L., Borioli G. A., Guido M. E. and Caputto B. L. (2004) c-Fos activated phospholipid synthesis is required for neurite elongation in differentiating PC12 cells. Mol Biol. Cell 15, 18811894.
  • Gille H. G., Sharrocks A. D. and Shaw P. E. (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at the c-fos promoter. Nature 358, 414417.
  • Ginty D. D., Fanger G. R., Wagner J. A. and Maue R. A. (1992) The activity of cAMP-dependent protein kinase is required at a post-translational level for induction of voltage-dependent sodium channels by peptide growth factors in PC12 cells. J. Cell Biol. 116, 14651473.
  • Greene L. A. and Tischler A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 24242428.
  • Groot M., Boxer L. M. and Thiel G. (2000) Nerve growth factor- and epidermal growth factor-regulated gene transcription in PC12 pheochromocytoma and INS-1 insulinoma cells. Eur. J. Cell Biol. 79, 924935.
  • Harada T., Morooka T., Ogawa S. and Nishida E. (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat. Cell Biol. 3, 453459.
  • Hipskind R. A., Baccarini M. and Nordheim A. (1994) Transient activation of RAF-1, MEK and ERK2 coincides kinetically with ternary complex factor phosphorylation and immediate-early gene promoter activity in vivo. Mol. Cell Biol. 14, 62196231.
  • Horgan A. M. and Stork P. J. (2003) Examining the mechanism of Erk nuclear translocation using green fluorescent protein. Exp. Cell Res. 285, 208220.
  • Jotte R. M. and Holt J. T. (1996) Myristylation of FBR v-fos dictates the differentiation pathways in malignant osteosarcoma. J. Cell Biol. 135, 457467.
  • Kalman D., Wong B., Horvai A. E., Cline M. J. and O'Lague P. H. (1990) Nerve growth factor acts through cAMP-dependent protein kinase to increase the number of sodium channels in PC12 cells. Neuron 4, 355366.
  • Kao S., Jaiswal R. K., Kolch W. and Landreth G. E. (2001) Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J. Biol. Chem. 276, 18 16918 177.
  • Koike T., Yamagishi H., Hatanaka Y., Fukushima A., Chang J. W., Xia Y., Fields M., Chandler P. and Iwashima M. (2003) A novel ERK-dependent signaling process that regulates interleukin-2 expression in a late phase of T-cell activation. J. Biol. Chem. 278, 15 68515 692.
  • Kruijer W., Schubert D. and Verma I. M. (1985) Induction of the proto-oncogene fos by nerve growth factor. Proc. Natl Acad. Sci. USA 82, 73307334.
  • Kujubu D. A., Lim R. W., Varnum B. C. and Herschman H. R. (1987) Induction of transiently expressed genes in PC12 pheochromocytoma cells. Oncogene 1, 257262.
  • Machida C. M., Scott J. D. and Ciment G. (1991) NGF-induction of the metalloproteinase transin/stromelysin in PC12 cells: involvement of multiple protein kinases. J. Cell Biol. 114, 10371048.
  • Marshall C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179185.
  • Milbrandt J. (1986) Nerve growth factor rapidly induces c-fos mRNA in PC12 rat pheochromocytoma cells. Proc. Natl Acad. Sci. USA 83, 47894793.
  • Monje P., Marinissen M. J. and Gutkind J. S. (2003) Phosphorylation of the carboxyl-terminal transactivation domain of c-Fos by extracellular signal-regulated kinase mediates the transcriptional activation of AP-1 and cellular transformation induced by platelet-derived growth factor. Mol. Cell Biol. 23, 70307043.
  • Monje P., Hernandez-Losa J., Lyons R. J., Castellone M. D. and Gutkind J. S. (2005) Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35 08135 084.
  • Muller R., Bravo R., Burckhardt J. and Curran T. (1984) Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312, 716720.
  • Murphy L. O., Smith S., Chen R. H., Fingar D. C. and Blenis J. (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4, 556564.
  • Murphy L. O., MacKeigan J. P. and Blenis J. (2004) A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol. Cell Biol. 24, 144153.
  • Nordstrom L. A., Lochner J., Yeung W. and Ciment G. (1995) The metalloproteinase stromelysin-1 (transin) mediates PC12 cell growth cone invasiveness through basal laminae. Mol. Cell Neurosci. 6, 5668.
  • Ofir R., Dwarki V. J., Rashid D. and Verma I. M. (1990) Phosphorylation of the C terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter. Nature 348, 8082.
  • Okazaki K. and Sagata N. (1995) The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J. 14, 50485059.
  • Pap M. and Szeberenyi J. (1998) Differential Ras-dependence of gene induction by nerve growth factor and second messenger analogs in PC12 cells. Neurochem. Res. 23, 969975.
  • Piechaczyk M. and Blanchard J. M. (1994) c-fos proto-oncogene regulation and function. Crit. Rev. Oncol. Hematol. 17, 93131.
  • Riccio A., Ahn S., Davenport C. M., Blendy J. A. and Ginty D. D. (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 23582361.
  • Roovers K., Davey G., Zhu X., Bottazzi M. E. and Assoian R. K. (1999) α5β1 integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol. Biol. Cell 10, 31973204.
  • DeSouza S., Lochner J., Machida C. M., Matrisian L. M. and Ciment G. (1995) A novel nerve growth factor-responsive element in the stromelysin-1 (transin) gene that is necessary and sufficient for gene expression in PC12 cells. J. Biol. Chem. 270, 91069114.
  • Sutherland J. A., Cook A., Bannister A. J. and Kouzarides T. (1992) Conserved motifs in Fos and Jun define a new class of activation domain. Genes Dev. 6, 18101819.
  • Tanos T., Marinissen M. J., Leskow F. C., Hochbaum D., Martinetto H., Gutkind J. S. and Coso O. A. (2005) Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J. Biol. Chem. 280, 18 84218 852.
  • Tischler A. S. and Greene L. A. (1975) Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells. Nature 258, 341342.
  • Tratner I., Ofir R. and Verma I. M. (1992) Alteration of a cyclic AMP-dependent protein kinase phosphorylation site in the c-Fos protein augments its transforming potential. Mol. Cell Biol. 12, 9981006.
  • Traverse S., Gomez N., Paterson H., Marshall C. and Cohen P. (1992) Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351355.
  • Traverse S., Seedorf K., Paterson H., Marshall C. J., Cohen P. and Ullrich A. (1994) EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4, 694701.
  • Vaudry D., Stork P. J., Lazarovici P. and Eiden L. E. (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296, 16481649.
  • Vician L., Basconcillo R. and Herschman H. R. (1997) Identification of genes preferentially induced by nerve growth factor versus epidermal growth factor in PC12 pheochromocytoma cells by means of representational difference analysis. J. Neurosci. Res. 50, 3243.
  • Weber J. D., Raben D. M., Phillips P. J. and Baldassare J. J. (1997) Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J. 326, 6168.
  • Werlen G., Hausmann B., Naeher D. and Palmer E. (2003) Signaling life and death in the thymus: timing is everything. Science 299, 18591863.
  • Yamamoto T., Ebisuya M., Ashida F., Okamoto K., Yonehara S. and Nishida E. (2006) Continuous ERK activation downregulates anti-proliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol. 16, 11711182.
  • York R. D., Molliver D. C., Grewal S. S., Stenberg P. E., McCleskey E. W. and Stork P. J. S. (2000) Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol. Cell Biol. 20, 80698083.