SEARCH

SEARCH BY CITATION

References

  • Ahluwalia J., Tinker A., Clapp L. H., Duchen M. R., Abramov A. Y., Pope S., Nobles M. and Segal A. W. (2004) The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 427, 853858.
  • Andersen J. K. (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10(Suppl.), S18S25.
  • Apetri M. M., Maiti N. C., Zagorski M. G., Carey P. R. and Anderson V. E. (2006) Secondary structure of alpha-synuclein oligomers: characterization by raman and atomic force microscopy. J. Mol. Biol. 355, 6371.
  • Babior B. M. (1999) NADPH oxidase: an update. Blood 93, 14641476.
  • Babior B. M. (2004) NADPH oxidase. Curr. Opin. Immunol. 16, 4247.
  • Block M. L., Wu X., Pei Z., Li G., Wang T., Qin L., Wilson B., Yang J., Hong J. S. and Veronesi B. (2004) Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB. J. 18, 16181620.
  • Colton C. A. and Gilbert D. L. (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett. 223, 284288.
  • Colton C. A., Yao J., Keri J. E. and Gilbert D. (1992) Regulation of microglial function by interferons. J. Neuroimmunol. 40, 8998.
  • Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889909.
  • DeCoursey T. E. (2003a) Interactions between NADPH oxidase and voltage-gated proton channels: why electron transport depends on proton transport. FEBS Lett. 555, 5761.
  • DeCoursey T. E. (2003b) Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475579.
  • DeCoursey T. E. (2004) During the respiratory burst, do phagocytes need proton channels or potassium channels, or both? Sci. STKE 2004, pe21.
  • Dobrenis K. (1998) Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 16, 320344.
  • Dringen R. (2000) Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62, 649671.
  • Duda J. E., Lee V. M. and Trojanowski J. Q. (2000) Neuropathology of synuclein aggregates. J. Neurosci. Res. 61, 121127.
  • Eder C. (1998) Ion channels in microglia (brain macrophages). Am. J. Physiol. 275 (2 Pt 1) C327C342.
  • Eder C. (2005) Regulation of microglial behavior by ion channel activity. J. Neurosci. Res. 81, 314321.
  • Eder C. and DeCoursey T. E. (2001) Voltage-gated proton channels in microglia. Prog. Neurobiol. 64, 277305.
  • Eder C., Klee R. and Heinemann U. (1998) Involvement of stretch-activated Cl channels in ramification of murine microglia. J. Neurosci. 18, 71277137.
  • Fordyce C. B., Jagasia R., Zhu X. and Schlichter L. C. (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J. Neurosci. 25, 71397149.
  • Galvin J. E., Lee V. M. and Trojanowski J. Q. (2001) Synucleinopathies: clinical and pathological implications. Arch. Neurol. 58, 186190.
  • Giasson B. I., Duda J. E., Murray I. V., Chen Q., Souza J. M., Hurtig H. I., Ischiropoulos H., Trojanowski J. Q. and Lee V. M. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985989.
  • Goedert M., Jakes R., Crowther R. A., Hasegawa M., Smith M. J. and Spillantini M. G. (1998) Intraneuronal filamentous tau protein and alpha-synuclein deposits in neurodegenerative diseases. Biochem. Soc. Trans. 26, 463471.
  • Green S. P., Cairns B., Rae J., Errett-Baroncini C., Hongo J. A., Erickson R. W. and Curnutte J. T. (2001) Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J. Cereb. Blood Flow Metab. 21, 374384.
  • Holevinsky K. O. and Nelson D. J. (1995) Simultaneous detection of free radical release and membrane current during phagocytosis. J. Biol. Chem. 270, 83288336.
  • Holevinsky K. O., Jow F. and Nelson D. J. (1994) Elevation in intracellular calcium activates both chloride and proton currents in human macrophages. J. Membr. Biol. 140, 1330.
  • Hurtig H. I., Trojanowski J. Q., Galvin J. et al. (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54, 19161921.
  • Jakes R., Spillantini M. G. and Goedert M. (1994) Identification of two distinct synucleins from human brain. FEBS Lett. 345, 2732.
  • Jenner P. (2003) Oxidative stress in Parkinson’s disease. Ann. Neurol. 53(Suppl. 3), S26S36; discussion S36–S38.
  • Khanna R., Roy L., Zhu X. and Schlichter L. C. (2001) K+ channels and the microglial respiratory burst. Am. J. Physiol. Cell Physiol. 280, C796C806.
  • Krishnan S., Chi E. Y., Wood S. J. et al. (2003) Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synuclein fibrillogenesis. Biochemistry 42, 829837.
  • McGeer P. L. and McGeer E. G. (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord. 10(Suppl. 1), S3S7.
  • McGeer P. L., Itagaki S., Boyes B. E. and McGeer E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 12851291.
  • McLarnon J. G., Helm J., Goghari V., Franciosi S., Choi H. B., Nagai A. and Kim S. U. (2000) Anion channels modulate store-operated calcium influx in human microglia. Cell Calcium 28, 261268.
  • McLarnon J. G., Franciosi S., Wang X., Bae J. H., Choi H. B. and Kim S. U. (2001) Acute actions of tumor necrosis factor-alpha on intracellular Ca(2 + ) and K(+) currents in human microglia. Neuroscience 104, 11751184.
  • Menegazzi R., Busetto S., Decleva E., Cramer R., Dri P. and Patriarca P. (1999) Triggering of chloride ion efflux from human neutrophils as a novel function of leukocyte beta 2 integrins: relationship with spreading and activation of the respiratory burst. J. Immunol. 162, 423434.
  • Morales A., Garcia-Ruiz C., Miranda M., Mari M., Colell A., Ardite E. and Fernandez-Checa J. C. (1997) Tumor necrosis factor increases hepatocellular glutathione by transcriptional regulation of the heavy subunit chain of gamma-glutamylcysteine synthetase. J. Biol. Chem. 272, 30 37130 379.
  • Morihata H., Nakamura F., Tsutada T. and Kuno M. (2000) Potentiation of a voltage-gated proton current in acidosis-induced swelling of rat microglia. J. Neurosci. 20, 72207227.
  • Mosharov E., Cranford M. R. and Banerjee R. (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39, 13 00513 011.
  • Nakamura K., Wang W. and Kang U. J. (1997) The role of glutathione in dopaminergic neuronal survival. J. Neurochem. 69, 18501858.
  • Paxinou E., Chen Q., Weisse M., Giasson B. I., Norris E. H., Rueter S. M., Trojanowski J. Q., Lee V. M. and Ischiropoulos H. (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci. 21, 80538061.
  • Phillips W. A. and Hamilton J. A. (1989) Phorbol ester-stimulated superoxide production by murine bone marrow-derived macrophages requires preexposure to cytokines. J. Immunol. 142, 24452449.
  • Przedborski S., Jackson-Lewis V., Vila M., Wu du C., Teismann P., Tieu K., Choi D. K. and Cohen O. (2003) Free radical and nitric oxide toxicity in Parkinson’s disease. Adv. Neurol. 91, 8394.
  • Reed D. J., Babson J. R., Beatty P. W., Brodie A. E., Ellis W. W. and Potter D. W. (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal. Biochem. 106, 5562.
  • Schlichter L. C., Sakellaropoulos G., Ballyk B., Pennefather P. S. and Phipps D. J. (1996) Properties of K+ and Cl channels and their involvement in proliferation of rat microglial cells. Glia 17, 225236.
  • Schmid-Antomarchi H., Schmid-Alliana A., Romey G., Ventura M. A., Breittmayer V., Millet M. A., Husson H., Moghrabi B., Lazdunski M. and Rossi B. (1997) Extracellular ATP and UTP control the generation of reactive oxygen intermediates in human macrophages through the opening of a charybdotoxin-sensitive Ca2+-dependent K+ channel. J. Immunol. 159, 62096215.
  • Shults C. W. (2006) Lewy bodies. Proc. Natl. Acad. Sci. USA 103, 16611668.
  • Sian J., Dexter D. T., Lees A. J., Daniel S., Agid Y., Javoy-Agid F., Jenner P. and Marsden C. D. (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 36, 348355.
  • Sofic E., Lange K. W., Jellinger K. and Riederer P. (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci. Lett. 142, 128130.
  • Souza J. M., Giasson B. I., Chen Q., Lee V. M. and Ischiropoulos H. (2000) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 275, 18 34418 349.
  • Spranger M., Kiprianova I., Krempien S. and Schwab S. (1998) Reoxygenation increases the release of reactive oxygen intermediates in murine microglia. J. Cereb. Blood Flow Metab. 18, 670674.
  • Teismann P., Tieu K., Cohen O., Choi D. K., Wu du C., Marks D., Vila M., Jackson-Lewis V. and Przedborski S. (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov. Disord. 18, 121129.
  • Thomas M. P., Bass T. I., Reynolds A., Glanzer J. and Gendelman H. E. (2006) K+ and Cl channels contribute to microglial production of reactive oxygen species in a laboratory model of Parkinson’s disease. 12th Annual Society for Neuroimmune Pharmacology Conference, Sante Fe, New Mexico.
  • Varela D., Simon F., Riveros A., Jorgensen F. and Stutzin A. (2004) NAD(P)H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation. J. Biol. Chem. 279, 13 30113 304.
  • Vicente R., Escalada A., Coma M., Fuster G., Sanchez-Tillo E., Lopez-Iglesias C., Soler C., Solsona C., Celada A. and Felipe A. (2003) Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J. Biol. Chem. 278, 46 30746 320.
  • Vila M., Jackson-Lewis V., Guegan C., Wu D. C., Teismann P., Choi D. K., Tieu K. and Przedborski S. (2001) The role of glial cells in Parkinson’s disease. Curr. Opin. Neurol. 14, 483489.
  • Walz W. and Bekar L. K. (2001) Ion channels in cultured microglia. Microsc. Res. Tech. 54, 2633.
  • Yamada T., McGeer P. L. and McGeer E. G. (1992) Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol. (Berl) 84, 100104.
  • Zhang W., Wang T., Pei Z., Miller D. S., Wu X., Block M. L., Wilson B., Zhou Y., Hong J. S. and Zhang J. (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB. J. 19, 533542.
  • Zou C. G. and Banerjee R. (2003) Tumor necrosis factor-alpha-induced targeted proteolysis of cystathionine beta-synthase modulates redox homeostasis. J. Biol. Chem. 278, 16 80216 808.