SEARCH

SEARCH BY CITATION

References

  • Abbott N. J. (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell. Mol. Neurobiol. 20, 131147.
  • Ajmone-Cat M. A., Nicolini A. and Minghetti L. (2003) Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E2 synthesis. J. Neurochem. 87, 11931203.
  • Aoki S., Su Q., Li H., Nishikawa K., Ayukawa K., Hara Y., Namikawa K., Kiryu-Seo S., Kiyama H. and Wada K. (2002) Identification of an axotomy-induced glycosylated protein, AIGP1, possibly involved in cell death triggered by endoplasmic reticulum-Golgi stress. J. Neurosci. 22, 10 75110 760.
  • Bascands J. L., Schanstra J. P., Couture R. and Girolami J. P. (2003) Bradykinin receptors: towards new pathophysiological roles. Med. Sci. (Paris) 19, 10931100.
  • Boka G., Anglade P., Wallach D., Javoy-Agid F., Agid Y. and Hirsch E. C. (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci. Lett. 172, 151154.
  • Brockhaus J., Ilschner S., Banati R. B. and Kettenmann H. (1993) Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J. Neurosci. 13, 44124421.
  • Brockhaus J., Moller T. and Kettenmann H. (1996) Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16, 8190.
  • Brosnan C. F., Selmaj K. and Raine C. S. (1988) Hypothesis: a role for tumor necrosis factor in immune-mediated demyelination and its relevance to multiple sclerosis. J. Neuroimmunol. 18, 8794.
  • Burch R. M. and Kniss D. A. (1988) Modulation of receptor-mediated signal transduction by diacylglycerol mimetics in astrocytes. Cell. Mol. Neurobiol. 8, 251257.
  • Burch R. M., Jelsema C. and Axelrod J. (1988) Cholera toxin and pertussis toxin stimulate prostaglandin E2 synthesis in a murine macrophage cell line. J. Pharmacol. Exp. Ther. 244, 765773.
  • Caggiano A. O. and Kraig R. P. (1999) Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1beta production. J. Neurochem. 72, 565575.
  • Capehart A. A. and Biddulph D. M. (1991) Effects of a putative prostaglandin E2 antagonist, AH6809, on chondrogenesis in serum-free cultures of chick limb mesenchyme. J. Cell. Physiol. 147, 403411.
  • Castano M. E., Schanstra J. P., Hirtz C., Pesquero J. B., Pecher C., Girolami J. P. and Bascands J. L. (1998) B2 kinin receptor upregulation by cAMP is associated with BK-induced PGE2 production in rat mesangial cells. Am. J. Physiol. 274, F532F540.
  • Chao J., Chao L., Swain C. C., Tsai J. and Margolius H. S. (1987) Tissue kallikrein in rat brain and pituitary: regional distribution and estrogen induction in the anterior pituitary. Endocrinology 120, 475482.
  • Davalos D., Grutzendler J., Yang G., Kim J. V., Zuo Y., Jung S., Littman D. R., Dustin M. L. and Gan W. B. (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752758.
  • Delmas P., Wanaverbecq N., Abogadie F. C., Mistry M. and Brown D. A. (2002) Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34, 209220.
  • Fang Y., Li G. G. and Peng J. (2005) Optical biosensor provides insights for bradykinin B(2) receptor signaling in A431 cells. FEBS Lett. 579, 63656374.
  • Ferreira J., Beirith A., Mori M. A., Araujo R. C., Bader M., Pesquero J. B. and Calixto J. B. (2005) Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice. J. Neurosci. 25, 24052412.
  • Fillit H., Ding W. H., Buce L., Kalman J., Altstie L., Lawlor B. and Wolf-Klein G. (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci. Lett. 129, 318320.
  • Galizzi J. P., Bodinier M. C., Chapelain B., Ly S. M., Coussy L., Giraud S., Neliat G. and Jean T. (1994) Up-regulation of [3H]-des-Arg10-kallidin binding to the bradykinin B1 receptor by interleukin-1 beta in isolated smooth muscle cells: correlation with B1 agonist-induced PGI2 production. Br. J. Pharmacol. 113, 389394.
  • Gimpl G., Walz W., Ohlemeyer C. and Kettenmann H. (1992) Bradykinin receptors in cultured astrocytes from neonatal rat brain are linked to physiological responses. Neurosci. Lett. 144, 139142.
  • Hall J. M. (1992) Bradykinin receptors: pharmacological properties and biological roles. Pharmacol. Ther. 56, 131190.
  • Hall J. M. (1997) Bradykinin receptors. Gen. Pharmacol. 28, 16.
  • Hamill O. P., Marty A., Neher E., Sakmann B. and Sigworth F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85100.
  • Hanisch U. K. (2002) Microglia as a source and target of cytokines. Glia 40, 140155.
  • Hoozemans J. J., Veerhuis R., Janssen I., Van Elk E. J., Rozemuller A. J. and Eikelenboom P. (2002) The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia: implications for Alzheimer’s disease. Brain Res. 951, 218226.
  • Hosli L., Hosli E., Kaeser H. and Lefkovits M. (1992) Colocalization of receptors for vasoactive peptides on astrocytes of cultured rat spinal cord and brain stem: electrophysiological effects of atrial and brain natriuretic peptide, neuropeptide Y and bradykinin. Neurosci. Lett. 148, 114116.
  • Ifuku M., Wang B. and Noda M. (2005) Activation of Ca2+-Dependent K+ Channels Essential for Bradykinin-Induced Microglial Migration. VII. European Meeting on Glial Cell Function in Health and Diseases. pp. 97101. Medimond S.r.I., Bologna, Italy.
  • Ikeda-Matsuo Y., Ikegaya Y., Matsuki N., Uematsu S., Akira S. and Sasaki Y. (2005) Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. J. Neurochem. 94, 15461558.
  • Jenkins D. W., Sellers L. A., Feniuk W. and Humphrey P. P. (2003) Characterization of bradykinin-induced prostaglandin E2 release from cultured rat trigeminal ganglion neurones. Eur. J. Pharmacol. 469, 2936.
  • Kaeser F., Luthy C., Herschkowitz N. and Oetliker O. (1988) The effect of temporary hypoxia on prostaglandin synthesis in mouse brain cell cultures during development. Prostaglandins Leukot. Essent. Fatty Acids 32, 7581.
  • Kim S. U. and De Vellis J. (2005) Microglia in health and disease. J. Neurosci. Res. 81, 302313.
  • Kim W. G., Mohney R. P., Wilson B., Jeohn G. H., Liu B. and Hong J. S. (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 63096316.
  • Kim E. J., Kwon K. J., Park J. Y., Lee S. H., Moon C. H. and Baik E. J. (2002) Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation. J. Neurosci. Res. 70, 97107.
  • Kreutzberg G. W. (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312318.
  • Lehmberg J., Beck J., Baethmann A. and Uhl E. (2003) Bradykinin antagonists reduce leukocyte-endothelium interactions after global cerebral ischemia. J. Cereb. Blood Flow Metab. 23, 441448.
  • Lehnardt S., Massillon L., Follett P., Jensen F. E., Ratan R., Rosenberg P. A., Volpe J. J. and Vartanian T. (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl Acad. Sci. USA 100, 85148519.
  • Lin W. W. and Chuang D. M. (1992) Regulation of bradykinin-induced phosphoinositide turnover in cultured cerebellar astrocytes: possible role of protein kinase C. Neurochem. Int. 21, 573579.
  • Luheshi G. N., Stefferl A., Turnbull A. V., Dascombe M. J., Brouwer S., Hopkins S. J. and Rothwell N. J. (1997) Febrile response to tissue inflammation involves both peripheral and brain IL-1 and TNF-alpha in the rat. Am. J. Physiol. 272, R862R868.
  • McCullough L., Wu L., Haughey N., Liang X., Hand T., Wang Q., Breyer R. M. and Andreasson K. (2004) Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J. Neurosci. 24, 257268.
  • Mehlhorn G., Hollborn M. and Schliebs R. (2000) Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int. J. Dev. Neurosci. 18, 423431.
  • Minghetti L. and Levi G. (1995) Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J. Neurochem. 65, 26902698.
  • Mogi M., Harada M., Riederer P., Narabayashi H., Fujita K. and Nagatsu T. (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208210.
  • Nagatsu T., Mogi M., Ichinose H. and Togari A. (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J. Neural Transm. Suppl. 60, 277290.
  • Nicolau M., Feltrin M. R. and Regoli D. (1996) Induction of bradykinin B1 hypotensive receptors in rats by lipopolysaccharide. Can. J. Physiol. Pharmacol. 74, 337340.
  • Nimmerjahn A., Kirchhoff F. and Helmchen F. R. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 13141318.
  • Noda M., Nakanishi H., Nabekura J. and Akaike N. (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251258.
  • Noda M., Kariura Y., Amano T., Manago Y., Nishikawa K., Aoki S. and Wada K. (2003) Expression and function of bradykinin receptors in microglia. Life Sci. 72, 15731581.
  • Noda M., Kariura Y., Amano T., Manago Y., Nishikawa K., Aoki S. and Wada K. (2004) Kinin receptors in cultured rat microglia. Neurochem. Int. 45, 437442.
  • Pal-Ghosh R., Yu J., Prado G. N., Taylor L., Mierke D. F. and Polgar P. (2003) Chimeric exchanges within the bradykinin B2 receptor intracellular face with the prostaglandin EP2 receptor as the donor: importance of the second intracellular loop for cAMP synthesis. Arch. Biochem. Biophys. 415, 5462.
  • Parpura V., Basarsky T. A., Liu F., Jeftinija K., Jeftinija S. and Haydon P. G. (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744747.
  • Passos G. F., Fernandes E. S., Campos M. M., Araujo J. G., Pesquero J. L., Souza G. E., Avellar M. C., Teixeira M. M. and Calixto J. B. (2004) Kinin B1 receptor up-regulation after lipopolysaccharide administration: role of proinflammatory cytokines and neutrophil influx. J. Immunol. 172, 18391847.
  • Patrizio M., Colucci M. and Levi G. (2000) Protein kinase C activation reduces microglial cyclic AMP response to prostaglandin E2 by interfering with EP2 receptors. J. Neurochem. 74, 400405.
  • Perry V. H., Andersson P. B. and Gordon S. (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci. 16, 268273.
  • Pinto Y. M., Bader M., Pesquero J. B., Tschope C., Scholtens E., Van Gilst W. H. and Buikema H. (2000) Increased kallikrein expression protects against cardiac ischemia. FASEB J. 14, 18611863.
  • Prinz M., Kann O., Draheim H. J., Schumann R. R., Kettenmann H., Weber J. R. and Hanisch U. K. (1999) Microglial activation by components of gram-positive and -negative bacteria: distinct and common routes to the induction of ion channels and cytokines. J. Neuropathol. Exp. Neurol. 58, 10781089.
  • Pyne N. J., Tolan D. and Pyne S. (1997) Bradykinin stimulates cAMP synthesis via mitogen-activated protein kinase-dependent regulation of cytosolic phospholipase A2 and prostaglandin E2 release in airway smooth muscle. Biochem J. 328, 689694.
  • Raidoo D. M. and Bhoola K. D. (1998) Pathophysiology of the kallikrein-kinin system in mammalian nervous tissue. Pharmacol. Ther. 79, 105127.
  • Rang H. P., Bevan S. and Dray A. (1991) Chemical activation of nociceptive peripheral neurones. Br. Med. Bull. 47, 534548.
  • Regoli D. C., Marceau F. and Lavigne J. (1981) Induction of beta 1-receptors for kinins in the rabbit by a bacterial lipopolysaccharide. Eur. J. Pharmacol. 71, 105115.
  • Saigusa T. (1990) Participation of interleukin-1 and tumor necrosis factor in the responses of the sympathetic nervous system during lipopolysaccharide-induced fever. Pflügers Arch. 416, 225229.
  • Sardi S. P., Daray F. M., Errasti A. E., Pelorosso F. G., Pujol-Lereis V. A., Rey-Ares V., Rogines-Velo M. P. and Rothlin R. P. (1999) Further pharmacological characterization of bradykinin B1 receptor up-regulation in human umbilical vein. J. Pharmacol. Exp. Ther. 290, 10191025.
  • Sastradipura D. F., Nakanishi H., Tsukuba T., Nishishita K., Sakai H., Kato Y., Gotow T., Uchiyama Y. and Yamamoto K. (1998) Identification of cellular compartments involved in processing of cathepsin E in primary cultures of rat microglia. J. Neurochem. 70, 20452056.
  • Schwaninger M., Sallmann S., Petersen N., Schneider A., Prinz S., Libermann T. A. and Spranger M. (1999) Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-kappaB. J. Neurochem. 73, 14611466.
  • Scicli A. G., Forbes G., Nolly H., Dujovny M. and Carretero O. A. (1984) Kallikrein-kinins in the central nervous system. Clin. Exp. Hypertens. A 6, 17311738.
  • Stephens G. J., Cholewinski A. J., Wilkin G. P. and Djamgoz M. B. (1993a) Calcium-mobilizing and electrophysiological effects of bradykinin on cortical astrocyte subtypes in culture. Glia 9, 269279.
  • Stephens G. J., Marriott D. R., Djamgoz M. B. and Wilkin G. P. (1993b) Electrophysiological and biochemical evidence for bradykinin receptors on cultured rat cortical oligodendrocytes. Neurosci. Lett. 153, 223226.
  • Wada R., Tifft C. J. and Proia R. L. (2000) Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc. Natl Acad. Sci. USA 97, 10 95410 959.
  • Walker K., Perkins M. and Dray A. (1995) Kinins and kinin receptors in the nervous system. Neurochem. Int. 26, 116.
  • Webb J. G., Shearer T. W., Yates P. W., Mukhin Y. V. and Crosson C. E. (2003) Bradykinin enhancement of PGE2 signalling in bovine trabecular meshwork cells. Exp. Eye Res. 76, 283289.
  • Welsh C., Dubyak G. and Douglas J. G. (1988) Relationship between phospholipase C activation and prostaglandin E2 and cyclic adenosine monophosphate production in rabbit tubular epithelial cells. Effects of angiotensin, bradykinin, and arginine vasopressin. J. Clin. Invest. 81, 710719.
  • Yanaga F., Hirata M. and Koga T. (1991) Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim. Biophys. Acta 1094, 139146.
  • Yasuyoshi H., Kashii S., Zhang S., Nishida A., Yamauchi T., Honda Y., Asano Y., Sato S. and Akaike A. (2000) Protective effect of bradykinin against glutamate neurotoxicity in cultured rat retinal neurons. Invest. Ophthalmol. Vis. Sci. 41, 22732278.
  • Zausinger S., Lumenta D. B., Pruneau D., Schmid-Elsaesser R., Plesnila N. and Baethmann A. (2002) Effects of LF 16-0687 Ms, a bradykinin B(2) receptor antagonist, on brain edema formation and tissue damage in a rat model of temporary focal cerebral ischemia. Brain Res. 950, 268278.