SEARCH

SEARCH BY CITATION

References

  • Adachi M., Sekiya M., Isobe M., Kumura Y., Ogita Z., Hinoda Y., Imai K. and Yachi A. (1992) Molecular cloning and chromosomal mapping of a human protein-tyrosine phosphatase LC-PTP. Biochem. Biophys. Res. Commun. 186, 16071615.
  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Buschbeck M., Eickhoff J., Sommer M. N. and Ullrich A. (2002) Phosphotyrosine-specific phosphatase PTP-SL regulates the ERK5 signaling pathway. J. Biol. Chem. 277, 29 50329 509.
  • Catterall W. A. (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521555.
  • Cheron G., Gall D., Servais L., Dan B., Maex R. and Schiffmann S. N. (2004) Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. J. Neurosci. 24, 434441.
  • Chirivi R. G. S., Dilaver G., Van De Vorstenbosch R., Wanschers B., Schepens J., Croes H., Fransen J. and Hendriks W. (2004) Characterization of multiple transcripts and isoforms derived from the mouse protein tyrosine phosphatase gene Ptprr. Genes Cells 9, 919933.
  • Chizhikov V. and Millen K. J. (2003) Development and malformations of the cerebellum in mice. Mol. Genet. Metab. 80, 5465.
  • Church G. M. and Gilbert W. (1984) Genomic sequencing. Proc. Natl Acad. Sci. U.S.A. 81, 19911995.
  • Colucci-D’Amato L., Perrone-Capano C. and Di Porzio U. (2003) Chronic activation of ERK and neurodegenerative diseases. Bioessays 25, 10851095.
  • Dilaver G., Van De Vorstenbosch R., Tárrega C., Ríos P., Pulido R., Van Aerde K., Fransen J. and Hendriks W. (2007) Proteolytic processing of the receptor-type protein tyrosine phosphatase PTPBR7. FEBS J. 274, 96108.
  • Ding Y., Zhou Y., Lai Q., Li J., Park H. and Diaz F. G. (2002) Impaired motor activity and motor learning function in rat with middle cerebral artery occlusion. Behav. Brain Res. 132, 2936.
  • Gee C. E. and Mansuy I. M. (2005) Protein phosphatases and their potential implications in neuroprotective processes. Cell. Mol. Life Sci. 62, 11201130.
  • Gronda M., Arab S., Iafrate B., Suzuki H. and Zanke B. W. (2001) Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation. Mol. Cell. Biol. 21, 68516858.
  • Hemsley K. M. and Hopwood J. J. (2005) Development of motor deficits in a murine model of mucopolysaccharidosis type IIIA (MPS-IIIA). Behav. Brain Res. 158, 191199.
  • Holmes S. E., O’Hearn E. E., McInnis M. G., Gorelick-Feldman D. A., Kleiderlein J. J., Callahan C., Kwak N. G., Ingersoll-Ashworth R. G., Sherr M., Sumner A. J., Sharp A. H., Ananth U., Seltzer W. K., Boss M. A., Vieria-Saecker A. M., Epplen J. T., Riess O., Ross C. A. and Margolis R. L. (1999) Expansion of a novel CAG trinucleotide repeat in the 5’ region of PPP2R2B is associated with SCA12. Nat. Genet. 23, 391392.
  • Jiao Y., Yan J., Zhao Y., Donahue L. R., Beamer W. G., Li X., Roe B. A., Ledoux M. S. and Gu W. (2005) Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 171, 12391246.
  • Kaplan D. R. and Miller F. D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381391.
  • Karim F. D. and Rubin G. M. (1999) PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol. Cell 3, 741750.
  • Kolkman M. J. M., Streijger F., Linkels M., Bloemen M., Heeren D., Hendriks W. J. A. J. and Van Der Zee C. E. E. M. (2004) Mice lacking Leukocyte common Antigen-Related (LAR) protein tyrosine phosphatase domains demonstrate spatial learning impairment in the two-trial water maze and hyperactivity in multiple behavioural tests. Behav. Brain Res. 154, 171182.
  • Munoz J. J., Tárrega C., Blanco-Aparicio C. and Pulido R. (2003) Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents. Biochem. J. 372, 193201.
  • Nakanishi S. (2005) Synaptic mechanisms of the cerebellar cortical network. Trends Neurosci. 28, 93100.
  • Nishi M., Hashimoto K., Kuriyama K., Komazaki S., Kano M., Shibata S. and Takeshima H. (2002) Motor discoordination in mutant mice lacking junctophilin type 3. Biochem. Biophys. Res. Commun. 292, 318324.
  • Ogata M., Oh-hora M., Kosugi A. and Hamaoka T. (1999) Inactivation of mitogen-activated protein kinases by a mammalian tyrosine-specific phosphatase, PTPBR7. Biochem. Biophys. Res. Commun. 256, 5256.
  • Paul S., Nairn A. C., Wang P. and Lombroso P. J. (2003) NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 3442.
  • Peled-Kamar M., Lotem J., Wirguin I., Weiner L., Hermalin A. and Groner Y. (1997) Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 94, 38833887.
  • Pietrobon D. (2005) Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr. Opin. Neurobiol. 15, 257265.
  • Pouyssegur J. and Lenormand P. (2003) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur. J. Biochem. 270, 32913299.
  • Pulido R., Zúñiga A. and Ullrich A. (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 17, 73377350.
  • Rintelen F., Hafen E. and Nairz K. (2003) The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 130, 34793490.
  • Saxena M., Williams S., Tasken K. and Mustelin T. (1999) Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nature Cell Biol. 1, 305311.
  • Sweatt J. D. (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr. Opin. Neurobiol. 14, 311317.
  • Tanoue T. and Nishida E. (2003) Molecular recognitions in the MAP kinase cascades. Cell. Signal. 15, 455462.
  • Tárrega C., Ríos P., Cejudo-Marín R., Blanco-Aparicio C., Van Den Berk L., Schepens J., Hendriks W., Tabernero L. and Pulido R. (2005) ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1. J. Biol. Chem. 280, 37 88537 894.
  • Thomas G. M. and Huganir R. L. (2004) MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173183.
  • Valjent E., Pascoli V., Svenningsson P., Paul S., Enslen H., Corvol J. C., Stipanovich A., Caboche J., Lombroso P. J., Nairn A. C., Greengard P., Herve D. and Girault J. A. (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl Acad. Sci. U.S.A. 102, 491496.
  • Van De Warrenburg B. P., Verbeek D. S., Piersma S. J., Hennekam F. A., Pearson P. L., Knoers N. V., Kremer H. P. and Sinke R. J. (2003) Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 61, 17601765.
  • Van Den Maagdenberg A. M. J. M., Bächner D., Schepens J. T. G., Peters W., Fransen J. A. M., Wieringa B. and Hendriks W. J. A. J. (1999) The mouse Ptprr gene encodes two protein tyrosine phosphatases, PTP-SL and PTPBR7, that display distinct patterns of expression during neural development. Eur. J. Neurosci. 11, 38323844.
  • Van Der Zee C. E. E. M., Man T. Y., Van Lieshout E. M. M., Van Der Heijden I., Van Bree M. and Hendriks W. J. A. J. (2003) Delayed peripheral nerve regeneration and central nervous system collateral sprouting in leukocyte common antigen-related protein tyrosine phosphatase deficient mice. Eur. J. Neurosci. 17, 9911005.
  • Walter J. T., Alvina K., Womack M. D., Chevez C. and Khodakhah K. (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat. Neurosci. 9, 389397.
  • Yabe I., Sasaki H., Chen D. H., Raskind W. H., Bird T. D., Yamashita I., Tsuji S., Kikuchi S. and Tashiro K. (2003) Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch. Neurol. 60, 17491751.
  • Zanke B., Squire J., Griesser H., Henry M., Suzuki H., Patterson B., Minden M. and Mak T. W. (1994) A hematopoietic protein tyrosine phosphatase (HePTP) gene that is amplified and overexpressed in myeloid malignancies maps to chromosome 1q32.1. Leukemia 8, 236244.
  • Zsarnovszky A. and Belcher S. M. (2004) Spatial, temporal, and cellular distribution of the activated extracellular signal regulated kinases 1 and 2 in the developing and mature rat cerebellum. Brain Res. Dev. Brain Res. 150, 199209.
  • Zúñiga A., Torres J., Úbeda J. and Pulido R. (1999) Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J. Biol. Chem. 274, 21 90021 907.