SEARCH

SEARCH BY CITATION

References

  • Arvidson G. A. (1968) Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur. J. Biochem. 4, 478486.
  • Barrantes F. J. (1982) Oligomeric forms of the membrane-bound acetylcholine receptor disclosed upon extraction of the Mr 43,000 nonreceptor peptide. J. Cell Biol. 92, 6068.
  • Barrantes F. J. (1993) Structural-functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J. 7, 14601467.
  • Barrantes F. J. (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Rev. 47, 7195.
  • Blount P. and Merlie J. P. (1988) Native folding of an acetylcholine receptor alpha subunit expressed in the absence of other receptor subunits. J. Biol. Chem. 263, 10721080.
  • Blount P., Smith M. M. and Merlie J. P. (1990) Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J. Cell Biol. 111, 26012611.
  • Bogdanov M. and Dowhan W. (1999) Lipid-assisted protein folding. J. Biol. Chem. 274, 3682736830.
  • Bogdanov M., Sun J., Kaback H. R. and Dowhan W. (1996) A phospholipid acts as a chaperone in assembly of a membrane transport protein. J. Biol. Chem. 271, 1161511618.
  • Bonini I. C., Antollini S. S., Gutiérrez-Merino C. and Barrantes F. J. (2002) Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes. Eur. Biophys. J. 31, 417427.
  • Brown D. A. and Rose J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533544.
  • Bruses J. L., Chauvet N. and Rutishauser U. (2001) Membrane lipid rafts are necessary for the maintenance of the α7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J. Neurosci. 21, 504512.
  • Campagna J. A. and Fallon J. (2006) Lipid rafts are involved in C95 (4,8) agrin fragment-induced acetylcholine receptor clustering. Neuroscience 138, 123132.
  • Chang W., Gelman M. S. and Prives J. M. (1997) Calnexin-dependent enhancement of nicotinic acetylcholine receptor assembly and surface expression. J. Biol. Chem. 272, 2892528932.
  • Chigorno V., Giannotta C., Ottico E., Sciannamblo M., Mikulak J., Prinetti A. and Sonnino S. (2005) Sphingolipid uptake by cultured cells: complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolized. J. Biol. Chem. 280, 26682675.
  • Edidin M. (2003) The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257283.
  • Eidelman O., BarNoy S., Razin M., Zhang J., McPhie P., Lee G., Huang Z., Sorscher E. J. and Pollard H. B. (2002) Role for phospholipid interactions in the trafficking defect of Delta F508-CFTR. Biochemistry 41, 1116111170.
  • Fantini J. (2003) How sphingolipids bind and shape proteins: molecular basis of lipid-protein interactions in lipid shells, rafts and related biomembrane domains. Cell Mol. Life Sci. 60, 10271032.
  • Fantini J., Garmy N., Mahfoud R. and Yahi N. (2002) Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev. Mol. Med. 2, 122.
  • Folch J., Lees M. and Sloane Stanley G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497509.
  • Fukasawa M., Nishijima M. and Hanada K. (1999) Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J. Cell Biol. 144, 673685.
  • Furuya S., Mitoma J., Makino A. and Hirabayashi Y. (1998) Ceramide and its interconvertible metabolite sphingosine function as indispensable lipid factors involved in survival and dendritic differentiation of cerebellar Purkinje cells. J. Neurochem. 71, 366377.
  • Futerman A. H. and Hannun Y. A. (2004) The complex life of simple sphingolipids. EMBO 5, 777782.
  • Gu Y., Forsayeth J. R., Verrall S., Yu X. M. and Hall Z. W. (1991) Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. J. Cell Biol. 114, 799807.
  • Hanada K., Nishijima M. and Akamatsu Y. (1990) A temperature-sensitive mammalian cell mutant with thermolabile serine palmitoyltransferase for the sphingolipid biosynthesis. J. Biol. Chem. 265, 2213722142.
  • Hanada K., Nishijima M., Kiso M., Hasegawa A., Fujita S., Ogawa T. and Akamatsu Y. (1992) Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids. J. Biol. Chem. 267, 2352723533.
  • Hanada K., Nishijima M., Akamatsu Y. and Pagano R. E. (1995) Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline-phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 62546260.
  • Hanada K., Nishijima M., Fujita T. and Kobayashi S. (2000) Specificity of inhibitors of serine palmitoyltransferase (SPT), a key enzyme in sphingolipid biosynthesis, in intact cells A novel evaluation system using an SPT-defective mammalian cell mutant. Biochem. Pharmacol. 59, 12111216.
  • Hanada K., Kumagai K., Yasuda S., Miura Y., Kawano M., Fukasawa M. and Nishijima M. (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803809.
  • Holthuis J. C., Pomorski T., Raggers R. J., Sprong H. and Van Meer G. (2001) The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81, 16891723.
  • Keller S. H., Lindstrom J. and Taylor P. (1996) Involvement of the chaperone protein calnexin and the acetylcholine receptor beta-subunit in the assembly and cell surface expression of the receptor. J. Biol. Chem. 271, 2287122877.
  • Keller S. H., Lindstrom J., Ellisman M. and Taylor P. (2001) Adjacent basic amino acid residues recognized by the COP I complex and ubiquitination govern endoplasmic reticulum to cell surface trafficking of the nicotinic acetylcholine receptor alpha-Subunit. J. Biol. Chem. 276, 1838418391.
  • Kreienkamp H. J., Maeda R. K., Sine S. M. and Taylor P. (1995) Intersubunit contacts governing assembly of the mammalian nicotinic acetylcholine receptor. Neuron 14, 635644.
  • Ledesma M. D., Simons K. and Dotti C. G. (1998) Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc. Natl Acad. Sci. USA 95, 39663971.
  • Lee M. C., Hamamoto S. and Schekman R. (2002) Ceramide biosynthesis is required for the formation of the oligomeric H + -ATPase Pma1p in the yeast endoplasmic reticulum. J. Biol. Chem. 277, 2239522401.
  • Lipsky N. G. and Pagano R. E. (1983) Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc. Natl Acad. Sci. USA 80, 26082612.
  • Maceyka M. and Machamer C. E. (1997) Ceramide accumulation uncovers a cycling pathway for the cis-Golgi network marker, infectious bronchitis virus M protein. J Cell Biol. 139, 14111418.
  • Mahfoud R., Garmy N., Maresca M., Yahi N., Puigserver A. and Fantini J. (2002) Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J. Biol. Chem. 277, 1129211296.
  • Mantipragada S. B. L., Horváth I., Arias H. R., Schwarzmann G., Sandhoff K., Barrantes F. J. and Marsh D. (2003) Lipid-protein interactions and the effect of local anaesthetics in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. Biochemistry 42, 91679175.
  • Marchand S., Devillers-Thiery A., Pons S., Changeux J. P. and Cartaud J. (2002) Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J. Neurosci. 22, 88918901.
  • Marcheselli V., Daniotti J. L., Vidal A. C., Maccioni H., Marsh D. and Barrantes F. J. (1993) Gangliosides in acetylcholine receptor-rich membranes from Torpedo marmorata and Discopyge tschudii. Neurochem. Res. 18, 599603.
  • Van Meer G. and Lisman Q. (2002) Sphingolipid transport: rafts and translocators. J. Biol. Chem. 277, 2585525858.
  • Merlie J. P. and Lindstrom J. (1983) Assembly in vivo of mouse muscle acetylcholine receptor: identification of an alpha subunit species that may be an assembly intermediate. Cell 34, 747757.
  • Merrill A. H. Jr., Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A. and Wang E. (1997) Sphingolipids-the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142, 208225.
  • Merrill A. H. Jr., Sullards M. C., Wang E., Voss K. A. and Riley R. T. (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ. Health Perspect. 109, 283289.
  • Miyake Y., Kozutsumi Y., Nakamura S., Fujita T. and Kawasaki T. (1995) Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. 211, 396403.
  • Pediconi M. F., Gallegos C. E., De Los Santos E. B. and Barrantes F. J. (2004) Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor. Neuroscience 128, 239249.
  • Quiram P. A., Ohno K., Milone M., Patterson M. C., Pruitt N. J., Brengman J. M., Sine S. M. and Engel A. G. (1999) Mutation causing congenital myasthenia reveals acetylcholine receptor beta/delta subunit interaction essential for assembly. J. Clin. Invest. 104, 14031410.
  • Radin N. S., Shayman J. A. and Inokuchi J. (1993) Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv. Lipid Res. 26, 183213.
  • Roccamo A. M., Pediconi M. F., Aztiria E., Zanello L., Wolstenholme A. and Barrantes F. J. (1999) Cells defective in sphingolipids biosynthesis express low amounts of muscle nicotinic acetylcholine receptor. Eur. J. Neurosci. 11, 16151623.
  • Rosenwald A. G., Machamer C. E. and Pagano R. E. (1992) Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway. Biochemistry 31, 35813590.
  • Ross A. F., Green W. N., Hartman D. S. and Claudio T. (1991) Efficiency of acetylcholine receptor subunit assembly and its regulation by cAMP. J Cell Biol. 113, 623636.
  • Sarnataro D., Campana V., Paladino S., Stornaiuolo M., Nitsch L. and Zurzolo C. (2004) PrPC association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol. Biol. Cell. 15, 40314042.
  • Sawamura N., Ko M., Yu W., Zou K., Hanada K., Suzuki T., Gong J. S., Yanagisawa K. and Michikawa M. (2004) Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J. Biol. Chem. 279, 1198411991.
  • Schwarzmann G. and Sandhoff K. (1990) Metabolism and intracellular transport of glycosphingolipids. Biochemistry 29, 1086510871.
  • Sevlever D., Pickett S., Mann K. J., Sambamurti K., Medof M. E. and Rosenberry T. L. (1999) Glycosylphosphatidylinositol-anchor intermediates associate with triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum. Biochem. J. 343, 627635.
  • Simons K. and Ikonen E. (1997) Functional rafts in cell membranes. Nature 387, 569572.
  • Simons K. and Toomre D. (2000) Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 3139.
  • Skrzypek M., Lester R. L. and Dickson R. C. (1997) Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae. J. Bacteriol. 179, 15131520.
  • Smith M. M., Lindstrom J. and Merlie J. P. (1987) Formation of the alpha-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum. J. Biol. Chem. 262, 43674376.
  • Sprong H., Degroote S., Claessens T., Van Drunen J., Oorschot V., Westerink B. H., Hirabayashi Y., Klumperman J., Van Der Sluijs P. and Van Meer G. (2001) Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J. Cell Biol. 155, 369380.
  • Stetzkowski-Marden F., Gaus K., Recouvreur M., Cartaud A. and Cartaud J. (2006) Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J Lipid Res. 47, 21212123.
  • Tettamanti G., Bassi R., Viani P. and Riboni L. (2003) Salvage pathways in glycosphingolipid metabolism. Biochimie 85, 423437.
  • Wanamaker C. P., Christianson J. C. and Green W. N. (2003) Regulation of nicotinic acetylcholine receptor assembly. Ann. NY Acad. Sci. 998, 6680.
  • Wang Q. and Chang A. (2002) Sphingoid base synthesis is required for oligomerization and cell surface stability of the yeast plasma membrane ATPase, Pma1. Proc. Natl Acad. Sci. USA 99, 12 85312 858.
  • Wang J. M., Zhang L., Yao Y., Viroonchatapan N., Rothe E. and Wang Z. Z. (2002) A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat. Neurosci. 5, 963970.
  • Zhu D., Xiong W. C. and Mei L. (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J. Neurosci. 26, 48414851.