SEARCH

SEARCH BY CITATION

References

  • Ackermann R. F. and Lear J. L. (1989) Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose. J. Cereb. Blood Flow Metab. 9, 774785.
  • Beck T., Wree A. and Schleicher A. (1990) Glucose utilization in rat hippocampus after long-term recovery from ischemia. J. Cereb. Blood Flow Metab. 10, 542549.
  • sBielajew C., Konkle A. T. and Merali Z. (2002) The effects of chronic mild stress on male Sprague-Dawley and Long Evans rats: I. Biochemical and physiological analyses. Behav. Brain Res. 136, 583592.
  • Bielajew C., Konkle A. T., Kentner A. C., Baker S. L., Stewart A., Hutchins A. A., Santa-Maria Barbagallo L. and Fouriezos G. (2003) Strain and gender specific effects in the forced swim test: effects of previous stress exposure. Stress 6, 269280.
  • Brown A. M. (2004) Brain glycogen re-awakened. J. Neurochem. 89, 537552.
  • Brown A. M., Sickmann H. M., Fosgerau K., Lund T. M., Schousboe A., Waagepetersen H. S. and Ransom B. R. (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res. 79, 7480.
  • Cataldo A. M. and Broadwell R. D. (1986a) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. I. Neurons and Glia. J. Elect. Micro. Tech. 3, 413437.
  • Cataldo A. M. and Broadwell R. D. (1986b) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J. Neurocytol. 15, 511524.
  • Chih C. P. and Roberts E. L. Jr (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J. Cereb. Blood Flow Metab. 23, 12631281.
  • Collins R. C., McCandlesss D. W. and Wagman I. L. (1987) Cerebral glucose utilization: comparison of [14C]deoxyglucose and [6-14C]glucose quantitative autoradiography. J. Neurochem. 49, 15641570.
  • Cruz N. F. and Dienel G. A. (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J. Cereb. Blood Flow Metab. 22, 14761489.
  • Cruz N. F., Lasater A., Zielke H. R. and Dienel G. A. (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J. Neurochem. 92, 934947.
  • Cruz N. F., Ball K. K. and Dienel G. A. (2007) Functional imaging of focal brain activation in conscious rats: impact of [14C]glucose metabolite spreading and release. J. Neurosci. Res. (in press).
  • Dienel G. A. and Cruz N. F. (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem. Int. 45, 321351.
  • Dienel G. A. and Cruz N. F. (2006) Astrocyte activation in working brain: energy supplied by minor substrates. Neurochem. Int. 48, 586495.
  • Dienel G. A. and Hertz L. (2001) Glucose and lactate metabolism during brain activation. J. Neurosci. Res. 66, 824838.
  • Dienel G. A. and Hertz L. (2005) Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 50, 362388.
  • Dienel G. A., Wang R. Y. and Cruz N. F. (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J. Cereb. Blood Flow Metab. 22, 14901502.
  • Dringen R., Gebhardt R. and Hamprecht B. (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. 623, 208214.
  • Evêquoz V., Stadelmann A. and Tsacopolous M. (1983) The effect of light on glycogen turnover in the retina of the intact honeybee drone (Apis  mellifera). J. Comp. Physiol. 150, 6975.
  • Folbergrova J., Nordstrom C. H. and Siesjö B. K. (1978) Labile metabolites and phosphorylase a in rapidly frozen rat cerebral cortex. J. Neurochem. 30, 493495.
  • Ghajar J. B., Plum F. and Duffy T. E. (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J. Neurochem. 38, 397409.
  • Gibbs M. E., Anderson D. G. and Hertz L. (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54, 214222.
  • Gruetter R. (2003) Glycogen: the forgotten cerebral energy store. J. Neurosci. Res. 74, 179183.
  • Hargittai P. T. and Lieberman E. M. (1991) Axon-glia interactions in the crayfish: glial cell oxygen consumption is tightly coupled to axon metabolism. Glia 4, 417423.
  • Harley C. W., Milway J. S. and Fara-On M. (1995) Medial forebrain bundle stimulation in rats activates glycogen phosphorylase in layers 4, 5b and 6 of ipsilateral granular neocortex. Brain Res. 685, 217223.
  • Hertz L. and Dienel G. A. (2005) Lactate transport and transporters: general principles and functional roles in brain cells. J. Neurosci. Res. 79, 1118.
  • Hertz L. and Peng L. (1992) Effects of monoamine transmitters on neurons and astrocytes: correlation between energy metabolism and intracellular messengers. Prog. Brain Res. 94, 283301.
  • Hertz L. and Zielke H. R. (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 27, 735743.
  • Hertz L., O’Dowd B. S., Ng K. T. and Gibbs M. E. (2003) Reciprocal changes in forebrain contents of glycogen and of glutamate/glutamine during early memory consolidation in the day-old chick. Brain Res. 994, 226233.
  • Hertz L., Peng L. and Dienel G. A. (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab. 27, 219249.
  • Hof P. R., Pascale E. and Magistretti P. J. (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J. Neurosci. 8, 19221928.
  • Hoover D. J., Lefkowitz-Snow S., Burgess-Henry J. L., Martin W. H., Armento S. J., Stock I. A., McPherson R. K., Genereux P. E., Gibbs E. M. and Treadway J. L. (1998) Indole-2-carboxamide inhibitors of human liver glycogen phosphorylase. J. Med. Chem. 41, 29342938.
  • Hyder F., Patel A. B., Gjedde A., Rothman D. L., Behar K. L. and Shulman R. G. (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J. Cereb. Blood Flow Metab. 26, 865877.
  • Kong J., Shepel P. N., Holden C. P., Mackiewicz M., Pack A. I. and Geiger J. D. (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci. 22, 55815587.
  • Konkle A. T. and Bielajew C. (2004) Tracing the neuroanatomical profiles of reward pathways with markers of neuronal activation. Rev. Neurosci. 15, 383414.
  • Konkle A. T., Wilson P. and Bielajew C. (1999) Histochemical mapping of the substrate for brain-stimulation reward with glycogen phosphorylase. J. Neurosci. Methods 93, 111119.
  • Kossut M., Hand P. J., Greenberg J. and Hand C. L. (1988) Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: a quantitative 2DG study. J. Neurophysiol. 60, 829852.
  • Lear J. L. and Ackermann R. F. (1988) Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3-4, and 6 positions using double label quantitative digital autoradiography. J. Cereb. Blood Flow Metab. 8, 575585.
  • Lear J. and Ackermann R. F. (1989) Why the deoxyglucose method has proven so useful in cerebral activation studies: the unappreciated prevalence of stimulation-induced glycolysis. J. Cereb. Blood Flow Metab. 9, 911913.
  • Madsen P. L., Cruz N. F., Sokoloff L. and Dienel G. A. (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J. Cereb. Blood Flow Metab. 19, 393400.
  • Magistretti P. J., Morrison J. H., Shoemaker W. J., Sapin V. and Bloom F. E. (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc. Natl Acad. Sci. USA 78, 65356539.
  • Martin W. H., Hoover D. J., Armento S. J., Stock I. A., McPherson R. K., Danley D. E., Stevenson R. W., Barrett E. J. and Treadway J. L. (1998) Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc. Natl Acad. Sci. USA 95, 17761781.
  • Newman E. A. (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536542.
  • Öz G., Berkich D. A., Henry P. G., Xu Y., LaNoue K., Hutson S. M. and Gruetter R. (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24, 1127311279.
  • Öz G., Seaquist E. R., Kumar A., Criego A. B., Benedict L. E., Rao J. P., Henry P. G., Van de Moortele P. F. and Gruetter R. (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am. J. Physiol. 292, E946E951.
  • Pellerin L. and Magistretti P. J. (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10, 5362.
  • Pfeiffer B., Elmer K., Roggendorf W., Reinhart P. H. and Hamprecht B. (1990) Immunohistochemical demonstration of glycogen phosphorylase in rat brain slices. Histochemistry 94, 7380.
  • Pfeiffer B., Meyermann R. and Hamprecht B. (1992) Immunohistochemical co-localization of glycogen phosphorylase with the astroglial markers glial fibrillary acidic protein and S-100 protein in rat brain sections. Histochemistry 97, 405412.
  • Pfeiffer-Guglielmi B., Fleckenstein B., Jung G. and Hamprecht B. (2003) Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J. Neurochem. 85, 7381.
  • Richter K., Hamprecht B. and Scheich H. (1996) Ultrastructural localization of glycogen phosphorylase predominantly in astrocytes of the gerbil brain. Glia 17, 263273.
  • Shulman R. G., Hyder F. and Rothman D. L. (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc. Natl Acad. Sci. USA 98, 64176422.
  • Siesjö B. K. (1978) Brain Energy Metabolism. Wiley, New York.
  • Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O. and Shinohara M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897916.
  • Stone E. A. (1994) Glial cells as targets of the central noradrenergic system. An update, in Noradrenergic Mechanisms In Parkinson’s Disease (BrileyM. and MarienM., eds.), pp. 173189. CRC Press, Boca Raton.
  • Swanson R. A. (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can. J. Physiol. Pharmacol. 70(Suppl.), S138S144.
  • Swanson R. A., Morton M. M., Sagar S. M. and Sharp F. R. (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51, 451461.
  • Takano T., Tian G. F., Peng W., Lou N., Libionka W., Han X. and Nedergaard M. (2006) Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260267.
  • Tekkok S. B., Brown A. M., Westenbroek R., Pellerin L. and Ransom B. R. (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J. Neurosci. Res. 81, 644652.
  • Treadway J. L., Mendys P. and Hoover D. J. (2001) Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin. Investig. Drugs 10, 439454.
  • Volterra A. and Meldolesi J. (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626640.
  • Walling S. G., Bromley K. and Harley C. W. (2006) Glycogen phosphorylase reactivity in the entorhinal complex in familiar and novel environments: evidence for labile glycogenolytic modules in the rat. J. Chem. Neuroanat. 31, 108113.
  • Walz W. (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem. Int, 36, 291300.
  • Watanabe H. and Passonneau J. V. (1973) Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J. Neurochem. 20, 15431554.
  • Wiesinger H., Hamprecht B. and Dringen R. (1997) Metabolic pathways for glucose in astrocytes. Glia. 21, 2234.
  • Zar J. H. (1974). Biostatical Analysis, pp. 182185. Prentice-Hall Inc., Englewood Cliffs, NJ.
  • Zhang Q. and Haydon P. G. (2005) Roles for gliotransmission in the nervous system. J. Neural Transm. 112, 121125.
  • Zilles K. and Wree A. (1995) Cortex: areal and laminal structure, in The Rat Nervous System, 2nd edn (PaxinosG., ed.), pp. 649685. Academic Press, San Diego.