SEARCH

SEARCH BY CITATION

References

  • Abler A. S., Chang C. J., Ful J., Tso M. O. and Lam T. T. (1996) Photic injury triggers apoptosis of photoreceptor cells Res. Commun. Mol. Pathol. Pharmacol. 92, 177189.
  • Ablonczy Z., Knapp D. R., Darrow R., Organisciak D. T. and Crouch R. K. (2000) Mass spectrometric analysis of rhodopsin from light damaged rats. Mol. Vision. 6, 109115.
  • Acosta M. L. and Kalloniatis M. (2005) Short- and long-term enzymatic regulation secondary to metabolic insult in the rat retina. J. Neurochem. 92, 13501362.
  • Acosta M. L., Fletcher E. L., Azizoglu S., Foster L. E., Farber D. B. and Kalloniatis M. (2005) Early makers of retinal degeneration in rd/rd mice. Mol. Vision 11, 717728.
  • Bonavita V. (1965) Molecular and kinetic properties of NAD- and NADP-linked dehydrogenases in the developing retina, in Biochemistry of the Retina (GraymoreC. N., ed.), pp. 513. Academic Press, London.
  • Bonavita V., Ponte F. and Amore G. (1963) Neurochemical studies on the inherited retinal degeneration of the rat. I. Lactate dehydrogenase in the developing retina. Vision Res. 61, 271280.
  • Bui B. V., Edmunds B., Cioffi G. A. and Fortune B. (2005) The gradient of retinal functional changes during acute intraocular pressure elevation. Invest. Ophthalmol. Vis. Sci. 46, 202213.
  • Cideciyan A. V., Jacobson S. G., Aleman T. S., Gu D., Pearce-Kelling S. E., Sumaroka A., Acland G. M. and Aguirre G. D. (2005) In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa. Proc. Natl Acad. Sci. USA 102, 52335238.
  • Darrow R. A., Darrow R. M. and Organisciak D. T. (1997) Biochemical characterization of cell specific enzymes in light-exposed rat retinas: oxidative loss of all-trans retinol dehydrogenase activity. Curr. Eye Res. 16, 144151.
  • Darvas F., Pantazis D., Kucukaltun-Yildirim E. and Leahy R. M. (2004) Mapping human brain function with MEG and EEG: methods and validation. Neuroimage 23, S289S299.
  • Donovan M., Carmody R. J. and Cotter T. G. (2001) Light-induced photoreceptor apoptosis in vivo requires neuronal nitric-oxide synthase and guanylate cyclase activity and is caspase-3-independent. J. Biol. Chem. 276, 2300023008.
  • Efron B. and Tibshirani R. J. (1986) Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy. Stat. Sci. 1, 5477.
  • Fain G. L. and Lisman J. E. (1993) Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. Exp. Eye Res. 57, 335340.
  • Fain G. L. and Lisman J. E. (1999) Light, Ca2+, and photoreceptor death: new evidence for the equivalent-light hypothesis from arrestin knockout mice. Invest. Ophthalmol. Vis. Sci. 40, 27702772.
  • Farber D. B. (1995) From mice to men: the cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture. Invest. Ophthalmol. Vis. Sci. 36, 263275.
  • Fesenko E. E., Kolesnikov S. S. and Lyubarsky A. L. (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310313.
  • Fletcher E. L. and Kalloniatis M. (1996) Neurochemical architecture of the normal and degenerating rat retina. J. Comp. Neurol. 376, 343360.
  • Fletcher E. L. and Kalloniatis M. (1997) Neurochemical development of the degenerating retina. J. Comp. Neurol. 388, 122.
  • Foster D. and Bischof W. (1987) Bootstrap variance estimators for the parameters of small-sample sensory-performance functions. Biol. Cybern. 57, 341347.
  • Graymore C. (1963) Metabolism of the developing retina. Lactic dehydrogenase isoenzyme in the normal and degenerating retina. A preliminary communication. Exp. Eye Res. 3, 58.
  • Green D. G. (1973) Scotopic and photopic components of the rat electroetinogram. J. Physiol. 228, 781797.
  • Green D. G. and Powers M. K. (1982) Mechanisms of light adaptation in rat retina. Vision Res. 22, 209216.
  • Grignolo A., Orzalesi N., Castellazzo R. and Vittone P. (1969) Retinal damage by visible light in albino rats. An electron microscope study. Ophthalmologica 157, 4359.
  • Grimm C., Wenzel A., Hafezi F. and Remé C. E. (2000) Gene expression in the mouse retina: the effect of damaging light. Mol. Vision 6, 252260.
  • Grimm C., Wenzel A., Williams T., Rol P., Hafezi F. and Remé C. (2001) Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest. Ophthalmol. Vis. Sci. 42, 497505.
  • Hao W., Wenzel A., Obin M. S. et al. (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat. Genet. 32, 254260.
  • Hecht S., Shlaer S. and Pirenne M. H. (1942) Energy, quanta, and vision. J. Gen. Physiol. 25, 819840.
  • Illing M. E., Rajan R. S., Bence N. F. and Kopito R. R. (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol.Chem. 277, 3415034160.
  • Jones B. W., Watt C. B., Frederick J. M., Baehr W., Chen C. K., Levine E. M., Milam A. H., Lavail M. M. and Marc R. E. (2003) Retinal remodelling triggered by photoreceptor degenerations. J. Comp. Neurol. 464, 116.
  • Jones B. W., Watt C. B and Marc R. E. (2005) Retinal Remodelling. Clin. Exp. Optom. 88, 282291.
  • Jones B. W., Marc R. E., Watt C. B., Vaughan D. K. and Organisciak D. T. (2006) Neural plasticity revealed by light-induced photoreceptor lesions. Adv. Exp. Med. Biol. 572, 405410.
  • Jozwick C., Valter K. and Stone J. (2006) Reversal of functional loss in the P23H-3 rat retina by management of ambient light. Exp. Eye Res. 83, 10741080.
  • Kalloniatis M. and Fletcher E. (2004) Retinitis pigmentosa: understanding the clinical presentation mechanisms and treatment options. Clin. Exp. Optom. 87, 6580.
  • Kalloniatis M. and Harwerth R. S. (1990) Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation. J. Opt. Soc. Am. A. 7, 19121928.
  • Kalloniatis M. and Harwerth R. S. (1991) Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions. J. Opt. Soc. Am. A. 8, 18181831.
  • Kalloniatis M., Tomisich G., Wellard J. W. and Foster L. E. (2002) Mapping photoreceptor and postreceptoral labeling patterns using a channel permeable probe (agmatine) during development in the normal and RCS rat retina. Vis. Neurosci. 19, 6170.
  • Kalloniatis M., Sun D., Foster L., Haverkamp S. and Wässle H. (2004) Localization of NMDA receptor subunits and mapping NMDA drive within the mammalian retina. Vis. Neurosci. 21, 587597.
  • Kuwabara T. and Gorn R. A. (1968) Retinal damage by visible light: an electron microscopic study. Arch. Ophthalmol. 79, 6978.
  • Kuzirian A., Meyhofer E., Hill L., Neary J. T. and Alkon D. L. (1986) Autoradiographic measurement of tritiated agmatine as an indicator of physiologic activity in Hermissenda crassicornis visual and vestibular neurons. J. Neurocytol. 15, 629643.
  • LaVail M. M., Gorrin G. M. and Repaci M. A. (1987) Strain differences in sensitivity to light-induced photoreceptor degeneration in albino mice. Curr. Eye Res. 6, 825834.
  • Lewin A. S., Drenser K. A., Hauswirth W. W., Nishikawa S., Yasumura D., Flannery J. G. and LaVail M. M. (1998) Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat. Med. 4, 967971.
  • Li F., Cao W. and Anderson R. E. (2001) Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp. Eye Res. 73, 569577.
  • Li F., Cao W. and Anderson R. E. (2003) Alleviation of constant light-induced photoreceptor degeneration by adaptation of adult albino rat to bright cyclic light. Invest. Ophthalmol. Vis. Sci. 44, 49684975.
  • Lisman J. and Fain G. (1995) Support for the equivalent light hypothesis for RP. Nature Med. 1, 12541255.
  • Lolley R. N., Rayborn M. E., Hollyfield J. G. and Farber D. B. (1980) Cyclic GMP and visual cell degeneration in the inherited disorder of rd mice: A progress report. Vision Res. 20, 11571161.
  • Machida S., Kondo M., Jamison J. A., Khan N. W., Kononen L. T., Sugawara T., Bush R. A. and Sieving P. A. (2000) P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest. Ophthalmol. Vis. Sci. 41, 32003209.
  • Marc R. E. (1999a) Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. J. Comp. Neurol. 407, 4764.
  • Marc R. E. (1999b) Kainate activation of horizontal, bipolar, amacrine, and ganglion cells in the rabbit retina. J. Comp. Neurol. 407, 6576.
  • Marc R. E. and Jones B. W. (2003) Retinal remodelling in inherited photoreceptor degenerations. Mol. Neurobiol. 28, 139147.
  • Marc R. E., Kalloniatis M. and Jones B. W. (2005) Excitation mapping with the organic cation AGB2+. Vision Res. 45, 34543468.
  • Naash M. L., Peachey N. S., Li Z. Y., Gryczan C. C., Goto Y., Blanks J., Milam A. H. and Ripps H. (1996) Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin. Invest. Ophthalmol. Vis. Sci. 37, 775782.
  • Nir I., Harrison J. M., Liu C. and Wen R. (2001) Extended photoreceptor viability by light stress in the RCS rats but not in the opsin P23H mutant rats. Invest. Ophthalmol. Vis. Sci. 42, 842849.
  • Noell W. K. (1965) Aspects of experimental and hereditary retinal degeneration, in Biochemistry of the Retina (GraymoreC.N., ed.) pp. 513. Academic press, London.
  • Noell W. K. (1980) Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res. 20, 11631171.
  • Noell W. K. and Albrecht R. (1971) Irreversible effects of visible light on the retina: role of vitamin A. Science 172, 7679.
  • Noell W. K., Walker V. S., Kang B. S. and Berman S. (1966) Retinal damage by light in rats. Invest. Ophthalmol. 5, 450473.
  • O’Steen W. K., Shear C. R. and Anderson K. V. (1972) Retinal damage after prolonged exposure to visible light. A light and electron microscopic study. Am. J. Anat. 134, 521.
  • Organisciak D. T., Li M., Darrow R. M. and Farber D. B. (1999) Photoreceptor cell damage by light in young Royal College of Surgeons rats. Curr. Eye Res. 19, 188196.
  • Organisciak D. T., Darrow R. M., Barsalou L., Kutty R. K. and Wiggert B. (2003) Susceptibility to retinal light damage in transgenic rats with rhodopsin mutations. Invest. Ophthalmol. Vis. Sci. 44, 486492.
  • Payne A. M., Downes S. M., Bessant D. A., Taylor R., Holder G. E., Warren M. J., Bird A. C. and Bhattacharya S. S. (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum. Mol. Genet. 7, 273277.
  • Penn J. S., Thum L. A. and Naash M. (1989) Photoreceptor physiology in the rat is governed by the light environment. Exp. Eye Res. 49, 205215.
  • Pinilla I., Lund R. D. and Sauvé Y. (2005) Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation. Neurosci. Lett. 382, 1621.
  • Ranchon I., LaVail M. M., Kotake Y. and Anderson R. (2003) Free radical trap phenyl-N-tert-butylnitrone protects against light damage but does not rescue P23H and S334ter rhodopsin transgenic rats from inherited retinal degeneration. J. Neurosci. 23, 60506057.
  • Remé C. E., Grimm C., Hafezi F., Marti A. and Wenzel A. (1998) Apoptotic cell death in retinal degenerations. Prog. Retin Eye Res. 17, 443464.
  • Schurr A., Payne R. S., Miller J. J. and Rigor B. M. (1997) Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia. Brain Res. 774, 221224.
  • Sokal I., Li N., Surgucheva I., Warren M. J., Payne A. M., Bhattacharya S. S., Baehr W. and Palczewski K. (1998) GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol. Cell 2, 129133.
  • Sun D. and Kalloniatis M. (2006) Mapping glutamate responses in immunocytochemically identified neurons of the mouse retina. J. Comp. Neurol. 494, 686703.
  • Sweasey D., Patterson D. S. and Terlecki S. (1971) Lactate dehydrogenase (LDH) isoenzymes in the retina of the sheep and changes associated with progressive retinal degeneration (bright blindness). Exp. Eye Res. 12, 6069.
  • Traverso V., Bush R. A., Sieving P. A. and Deretic D. (2002) Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats. Invest. Ophthalmol. Vis. Sci. 43, 16551661.
  • Tso M. O., Zhang C., Abler A. S., Chang C. J., Wong F., Chang G. O. and Lam T. T. (1994) Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest. Ophthalmol. Vis. Sci. 35, 26932699.
  • Vaughan D. K., Coulibaly S. F., Darrow R. M. and Organisciak D. T. (2003) A morphometric study of light-induced damage in transgenic rat models of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 44, 848855.
  • Vogel M. and Möller K. (1980) Cellular decay in the rat retina during normal post-natal development: a preliminary quantitative analysis of the basic endogenous rhythm. Albrecht Von Graefes. Arch. Klin. Exp. Ophthalmol. 212, 243260.
  • Walsh N., Van Driel D., Lee D. and Stone J. (2004) Multiple vulnerability of photoreceptors to mesopic ambient light in the P23H transgenic rat. Brain Res. 1013, 194203.
  • Wang M., Lam T. T., Tso M. O. and Naash M. I. (1997) Expression of a mutant opsin gene increases the susceptibility of the retina to light damage. Vis. Neurosci. 14, 5562.
  • Wenzel A., Grimm C., Samardzija M. and Reme C. E. (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog. Retin Eye Res. 24, 275306.
  • Yoshikami A. (1981) Transmitter sensitivity of neurons assayed by autoradiography. Science 212, 929930.
  • Yu D. Y., Cringle S., Valter K., Walsh N., Lee D. and Stone J. (2004) Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Invest. Ophthalmol. Vis. Sci. 45, 20132019.
  • Zeevalk G. D. and Nicklas W. J. (1997) Contribution of glial metabolism to neuronal damage caused by partial inhibition of energy metabolism in retina. Exp. Eye Res. 65, 397405.
  • Zhang C., Shen J. K., Lam T. T., Zeng H. Y., Chiang S. K., Yang F. and Tso M. O. (2005) Activation of microglia and chemokines in light-induced retinal degeneration. Mol. Vision 11, 887895.