SEARCH

SEARCH BY CITATION

References

  • Abraha A., Ghoshal N., Gamblin T. C., Cryns V., Berry R. W., Kuret J. and Binder L. I. (2000) C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J. Cell Sci. 113, 37373745.
  • Alonso A. C., Mederlyova A., Novak M., Grundke-Iqbal I. and Iqbal K. (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem. 279, 3487334881.
  • Avila J. (2006) Tau protein, the main component of paired helical filaments. J. Alzheimers Dis. 9, 171175.
  • Avila J., Lim F., Moreno F., Belmonte C. and Cuello A. C. (2002) Tau function and dysfunction in neurons: its role in neurodegenerative disorders. Mol. Neurobiol. 25, 213231.
  • Bain J., McLauchlan H., Elliott M. and Cohen P. (2003) The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199204.
  • Buee L., Bussiere T., Buee-Scherrer V., Delacourte A. and Hof P. R. (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33, 95130.
  • Cho J. H. and Johnson G. V. (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J. Neurochem. 88, 349358.
  • Cleveland D. W., Hwo S. Y. and Kirschner M. W. (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol. 116, 227247.
  • Cohen P. and Frame S. (2001) The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769776.
  • Daly N. L., Hoffmann R., Otvos L. Jr and Craik D. J. (2000) Role of phosphorylation in the conformation of tau peptides implicated in Alzheimer’s disease. Biochemistry 39, 90399046.
  • Doble B. W. and Woodgett J. R. (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 11751186.
  • Dominguez I. and Green J. B. (2001) Missing links in GSK3 regulation. Dev. Biol. 235, 303313.
  • Ferrer I., Gomez-Isla T., Puig B., Freixes M., Ribe E., Dalfo E. and Avila J. (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr. Alzheimer Res. 2, 318.
  • Flaherty D. B., Soria J. P., Tomasiewicz H. G. and Wood J. G. (2000) Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants. J. Neurosci. Res. 62, 463472.
  • Frame S., Cohen P. and Biondi R. M. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 13211327.
  • Goedert M. and Spillantini M. G. (2006) A century of Alzheimer’s disease. Science 314, 777781.
  • Gong C. X., Lidsky T., Wegiel J., Zuck L., Grundke-Iqbal I. and Iqbal K. (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J. Biol. Chem. 275, 55355544.
  • Gong C. X., Liu F., Grundke-Iqbal I. and Iqbal K. (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural. Transm. 112, 813838.
  • Gordon-Krajcer W., Yang L. and Ksiezak-Reding H. (2000) Conformation of paired helical filaments blocks dephosphorylation of epitopes shared with fetal tau except Ser199/202 and Ser202/Thr205. Brain Res. 856, 163175.
  • Guillozet-Bongaarts A. L., Garcia-Sierra F., Reynolds M. R., Horowitz P. M., Fu Y., Wang T., Cahill M. E., Bigio E. H., Berry R. W. and Binder L. I. (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol. Aging 26, 10151022.
  • Hirokawa N., Shiomura Y. and Okabe S. (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J. Cell Biol. 107, 14491459.
  • Hoffmann R., Lee V. M., Leight S., Varga I. and Otvos L. Jr (1997) Unique Alzheimer’s disease paired helical filament specific epitopes involve double phosphorylation at specific sites. Biochemistry 36, 81148124.
  • Hong M., Chen D. C., Klein P. S. and Lee V. M. (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J. Biol. Chem. 272, 2532625332.
  • Hoshi M., Takashima A., Noguchi K., Murayama M., Sato M., Kondo S., Saitoh Y., Ishiguro K., Hoshino T. and Imahori K. (1996) Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc. Natl Acad. Sci. USA 93, 27192723.
  • Ishiguro K., Shiratsuchi A., Sato S., Omori A., Arioka M., Kobayashi S., Uchida T., and Imahori K. (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 325, 167172.
  • Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M. K., Trojanowski J. Q. and Lee V. M. (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751762.
  • Ishizawa T., Sahara N., Ishiguro K., Kersh J., McGowan E., Lewis J., Hutton M., Dickson D. W. and Yen S. H. (2003) Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am. J. Pathol. 163, 10571067.
  • Jicha G. A., Bowser R., Kazam I. G. and Davies P. (1997a) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J. Neurosci. Res. 48, 128132.
  • Jicha G. A., Lane E., Vincent I., Otvos L. Jr, Hoffmann R. and Davies P. (1997b) A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer’s disease. J. Neurochem. 69, 20872095.
  • Lichtenberg B., Mandelkow E. M., Hagestedt T. and Mandelkow E. (1988) Structure and elasticity of microtubule-associated protein tau. Nature 334, 359362.
  • Liou Y. C., Sun A., Ryo A. et al. (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556561.
  • Liu F., Iqbal K., Grundke-Iqbal I. and Gong C. X. (2002) Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett. 530, 209214.
  • Lovestone S., Hartley C. L., Pearce J. and Anderton B. H. (1996) Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73, 11451157.
  • Lu P. J., Wulf G., Zhou X. Z., Davies P. and Lu K. P. (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784788.
  • Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R. and Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 20, 2739.
  • Mercken M., Grynspan F. and Nixon R. A. (1995) Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF-tau. FEBS Lett. 368, 1014.
  • Muyllaert D., Terwel D., Borghgraef P., Devijver H., Dewachter I. and Van Leuven F. (2006) Transgenic mouse models for Alzheimer’s disease: the role of GSK-3B in combined amyloid and tau-pathology. Rev. Neurol. (Paris) 162, 903907.
  • Planel E., Yasutake K., Fujita S. C. and Ishiguro K. (2001) Inhibition of protein phosphatase 2A overrides tau protein kinase I/glycogen synthase kinase 3 beta and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J. Biol. Chem. 276, 3429834306.
  • Reynolds C. H., Betts J. C., Blackstock W. P., Nebreda A. R. and Anderton B. H. (2000) Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J. Neurochem. 74, 15871595.
  • Schweers O., Schonbrunn-Hanebeck E., Marx A. and Mandelkow E. (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269, 2429024297.
  • Selkoe D. J. (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399, A23A31.
  • Sengupta A., Kabat J., Novak M., Wu Q., Grundke-Iqbal I. and Iqbal K. (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys. 357, 299309.
  • Singer D., Lehmann J., Hanisch K., Hartig W. and Hoffmann R. (2006) Neighbored phosphorylation sites as PHF-tau specific markers in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 346, 819828.
  • Skrabana R., Skrabanova-Khuebachova M., Kontsek P. and Novak M. (2006) Alzheimer’s disease associated conformation of intrinsically disordered tau protein studied by intrinsically disordered protein liquid-phase competitive enzyme-linked immunosorbent assay. Anal. Biochem. 359, 230237.
  • Spittaels K., Van den Haute C., Van Dorpe J. et al. (2000) Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J. Biol. Chem. 275, 4134041349.
  • Takahashi M., Tomizawa K. and Ishiguro K. (2000) Distribution of tau protein kinase I/glycogen synthase kinase-3beta, phosphatases 2A and 2B, and phosphorylated tau in the developing rat brain. Brain Res. 857, 193206.
  • Takashima A., Murayama M., Murayama O. et al. (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc. Natl Acad. Sci. USA 95, 96379641.
  • Uversky V. N., Winter S., Galzitskaya O. V., Kittler L. and Lober G. (1998) Hyperphosphorylation induces structural modification of tau-protein. FEBS Lett. 439, 2125.
  • Wagner U., Utton M., Gallo J. M. and Miller C. C. (1996) Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J. Cell Sci. 109, 15371543.
  • Zhou X. Z., Kops O., Werner A., Lu P. J., Shen M., Stoller G., Kullertz G., Stark M., Fischer G. and Lu K. P. (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873883.