SEARCH

SEARCH BY CITATION

References

  • Adachi K., Cruz N. F., Sokoloff L. and Dienel G. A. (1995) Labeling of metabolic pools by [6-14C]glucose during K(+)-induced stimulation of glucose utilization in rat brain. J. Cereb. Blood Flow Metab. 15, 97110.
  • Bachelard H. S., Daniel P. M., Love E. R. and Pratt O. E. (1973) The transport of glucose into the brain of the rat in vivo. Proc. R. Soc. Lond. B Biol. Sci. 183, 7182.
  • Badar-Goffer R. S., Bachelard H. S. and Morris P. G. (1990) Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in the brain. Biochem. J. 266, 133139.
  • Ball K. K., Gandhi G. K., Thrash J., Cruz N. F. and Dienel G. A. (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [14C]glucose metabolite trafficking. J. Neurosci. Res. (In press).
  • Ballanyi K. (1995) Modulation of glial potassium, sodium, and chloride activities by the extracellular milieu, in Neuroglia (KettenmannH. and RansomB. R., eds), pp. 289298. Oxford University Press, New York.
  • Berl S. and Clarke D. D. (1972) Effects of Li + on the metabolism in brain of glutamate, glutamine, aspartate and GABA from [1- 14C]acetate in vitro. Brain Res. 36, 203213.
  • Berl S. and Frigyesi T. L. (1969) The turnover of glutamate, glutamine, aspartate and GABA labeled with [1-14C]acetate in caudate nucleus, thalamus and motor cortex (cat). Brain Res. 12, 444455.
  • Berl S., Clarke D. D. and Nicklas W. J. (1970a) Compartmentation of citric acid cycle metabolism in brain: effect of aminooxyacetic acid, ouabain and Ca2+ on the labelling of glutamate, glutamine, aspartate and gaba by [1-14C]acetate, [U-14C]glutamate and [U-14C]aspartate. J. Neurochem. 17, 9991007.
  • Berl S., Nicklas W. J. and Clarke D. D. (1970b) Compartmentation of citric acid cycle metabolism in brain: labelling of glutamate, glutamine, aspartate and gaba by several radioactive tracer metabolites. J. Neurochem. 17, 10091015.
  • BerlS., ClarkeD. D., SchneiderS., eds. (1975) Metabolic Compartmentation and Neurotransmission: Relation to Brain Structure and Function. Plenum Press, New York.
  • Boumezbeur F., Besret L., Valette J. et al. (2005) Glycolysis versus TCA cycle in the primate brain as measured by combining 18 F-FDG PET and 13C-NMR. J. Cereb. Blood Flow Metab. 25, 14181423.
  • Buckley B. M. and Williamson D. H. (1977) Origins of blood acetate in the rat. Biochem. J. 166, 539545.
  • Cerdan S., Künnecke B. and Seelig J. (1990) Cerebral metabolism of [1,2-13C2] acetate as detected by in vivo and in vitro with 13C NMR. J. Biol. Chem. 265, 1291612926.
  • Cetin N., Ball K., Gokden M., Cruz N. F. and Dienel G. A. (2003) Effect of reactive cell density on net [2-14C]acetate uptake into rat brain: labeling of clusters containing GFAP+- and lectin+-immunoreactive cells. Neurochem. Int. 42, 359374.
  • Chatton J. Y., Marquet P. and Magistretti P. J. (2000) A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics. Eur. J. Neurosci. 12, 38433853.
  • Clarke D. D., Nicklas W. J. and Berl S. (1970) Tricarboxylic acid-cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and gamma-aminobutyrate. Biochem. J. 120, 345351.
  • Collins R. C., McCandless D. W. and Wagman I. L. (1987) Cerebral glucose utilization: comparison of [14C]deoxyglucose and [6-14C]glucose quantitative autoradiography. J. Neurochem. 49, 15641570.
  • Cremer J. E. (1964) Amino acid metabolism in rat brain studied with 14C-labelled glucose. J. Neurochem. 11, 165185.
  • Cremer J. E. (1967) Studies on brain-cortex slices. The influence of various inhibitors on the retention of potassium ions and amino acids with glucose or pyruvate as substrate. Biochem. J. 104, 223228.
  • Cremer J. E. (1970) Selective inhibition of glucose oxidation by triethyltin in rat brain in vivo. Biochem. J. 119, 95102.
  • Crone C. (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol. Scand. 58, 292305.
  • Cruz N. F., Lasater A., Zielke H. R. and Dienel G. A. (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J. Neurochem. 92, 934947.
  • Cruz N. F., Ball K. K. and Dienel G. A. (2007) Functional imaging of focal brain activation in conscious rats: impact of [14C]glucose metabolite spreading and release. J. Neurosci. Res. (In press).
  • Dalsgaard M. K. (2006) Fuelling cerebral activity in exercising man. J. Cereb. Blood Flow Metab. 26, 731750.
  • Dienel G. A. and Cruz N. F. (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem. Int. 45, 321351.
  • Dienel G. A. and Cruz N. F. (2006) Astrocyte activation in working brain: energy supplied by minor substrates. Neurochem. Int. 48, 586595.
  • Dienel G., Ryder E. and Greengard O. (1977) Distribution of mitochondrial enzymes between the perikaryal and synaptic fractions of immature and adult rat brain. Biochim. Biophys. Acta 496, 484494.
  • Dienel G. A., Liu K. and Cruz N. F. (2001a) Local uptake of (14)C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. J. Neurosci. Res. 66, 812820.
  • Dienel G. A., Popp D., Drew P. D., Ball K., Krisht A. and Cruz N. F. (2001b) Preferential labeling of glial and meningial brain tumors with [2-(14)C]acetate. J. Nucl. Med. 42, 12431250.
  • Dienel G. A., Cruz N. F., Ball K., Popp D., Gokden M., Baron S., Wright D. and Wenger G. R. (2003) Behavioral training increases local astrocytic metabolic activity but does not alter outcome of mild transient ischemia. Brain Res. 961, 201212.
  • Dienel G. A., Ball K. and Cruz N. F. (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J. Neurochem. 102, 466478.
  • Dringen R., Gebhardt R. and Hamprecht B. (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. 623, 208214.
  • Ebert D., Haller R. G. and Walton M. E. (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 23, 59285935.
  • Eriksson G., Peterson A., Iverfeldt K. and Walum E. (1995) Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from newborn rat. Glia 15, 152156.
  • Ernsting M. J., Kafor W. F., Nauta W. T., Oosterhuis H. K. and De Waart C. (1960) Biochemical studies on psychotropic drugs-I. The effect of psychotropic drugs on gamma-aminobutyric acid and glutamic acid in brain tissue. J. Neurochem. 5, 121127.
  • Fox P. T., Raichle M. E., Mintun M. A. and Dence C. (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462464.
  • Fujino T., Kondo J., Ishikawa M., Morikawa K. and Yamamoto T. T. (2001) Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276, 1142011426.
  • Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G. and Brown M. S. (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76, 865873.
  • Gonda O. and Quastel J. H. (1966) Transport and metabolism of acetate in rat brain cortex in vitro. Biochem. J. 100, 8394.
  • Grill V., Bjorkman O., Gutniak M. and Lindqvist M. (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metabolism 41, 2832.
  • Grünwald F., Crane A., Menda M., Suda S., Kennedy C., Pettigrew K. D., Biersack H. J., Sokoloff L. and Kuschinsky W. (1993) Effects of physostigmine on local cerebral glucose utilization in the central components of the rat visual system. Neurosci. Lett. 163, 6770.
  • Guynn R. W. and Veech R. L. (1974) Direct enzymic determination of acetate in tissue extracts in the presence of labile acetate esters. Anal. Biochem. 61, 615.
  • Hassel B., Bachelard H., Jones P., Fonnum F. and Sonnewald U. (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J. Cereb. Blood Flow Metab. 17, 12301238.
  • Hertz L. and Zielke H. R. (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 27, 735743.
  • Hertz E., Shargool M. and Hertz L. (1986) Effects of barbiturates on energy metabolism by cultured astrocytes and neurons in the presence of normal and elevated concentrations of potassium. Neuropharmacology 25, 533539.
  • Hertz L., Peng L. and Dienel G. A. (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab. 27, 219249.
  • Hof P. R., Pascale E. and Magistretti P. J. (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J. Neurosci. 8, 19221928.
  • Hosoi R., Okada M., Hatazawa J., Gee A. and Inoue O. (2004) Effect of astrocytic energy metabolism depressant on 14C-acetate uptake in intact rat brain. J. Cereb. Blood Flow Metab. 24, 188190.
  • Hyder F., Patel A. B., Gjedde A., Rothman D. L., Behar K. L. and Shulman R. G. (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J. Cereb. Blood Flow Metab. 26, 865877.
  • Ishikawa M., Fujino T., Sakashita H., Morikawa K. and Yamamoto T. (1995) Kinetic properties and structural characterization of highly purified acetyl-CoA synthetase from bovine heart and tissue distribution of the enzyme in rat tissues. Tohoku J. Exp. Med. 175, 5567.
  • Juel C. (1996) Symmetry and pH dependency of the lactate/proton carrier in skeletal muscle studied with rat sarcolemmal giant vesicles. Biochim. Biophys. Acta 1283, 106110.
  • Kapetanovic I. M., Yonekawa W. D. and Kupferberg H. J. (1993) Time-related loss of glutamine from hippocampal slices and concomitant changes in neurotransmitter amino acids. J. Neurochem. 61, 865872.
  • Kaufman E. E. and Driscoll B. F. (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J. Neurochem. 58, 258262.
  • Knowles S. E., Jarrett I. G., Filsell O. H. and Ballard F. J. (1974) Production and utilization of acetate in mammals. Biochem. J. 142, 401411.
  • LaManna J. C., Harrington J. F., Vendel L. M., Abi-Saleh K., Lust W. D. and Harik S. I. (1993) Regional blood-brain lactate influx. Brain Res. 614, 164170.
  • Lear J. L. and Ackermann R. F. (1990) Evaluation of radiolabeled acetate and fluoroacetate as potential tracers of cerebral oxidative metabolism. Metab. Brain Dis. 5, 4556.
  • Lebon V., Petersen K. F., Cline G. W., Shen J., Mason G. F., Dufour S., Behar K. L., Shulman G. I. and Rothman D. L. (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. 22, 15231531.
  • Luong A., Hannah V. C., Brown M. S. and Goldstein J. L. (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 275, 2645826466.
  • McCulloch J., Savaki H. E., McCulloch M. C. and Sokoloff L. (1980) Retina-dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus. Science 207, 313315.
  • McKenna M. C., Sonnewald U., Huang X., Stevenson J. and Zielke H. R. (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66, 386393.
  • Minchin M. C. W. and Beart P. M. (1975) Compartmentation of amino acid metabolism in the rat dorsal root ganglion: a metabolic and autoradiographic study. Brain Res. 83, 437449.
  • Miyaoka M., Shinohara M., Batipps M., Pettigrew K. D., Kennedy C. and Sokoloff L. (1979) The relationship between the intensity of the stimulus and the metabolic response in the visual system of the rat. Acta Neurol. Scand. 60(Suppl. 1), 1617.
  • Muir D., Berl S. and Clarke D. D. (1986) Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res. 380, 336340.
  • Nehlig A., Wittendorp-Rechenmann E. and Lam C. D. (2004) Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J. Cereb. Blood Flow Metab. 24, 10041014.
  • Newman E. A. (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536542.
  • Oldendorf W. H. (1973) Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 224, 14501453.
  • Öz G., Berkich D. A., Henry P. G., Xu Y., LaNoue K., Hutson S. M. and Gruetter R. (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24, 1127311279.
  • Peuchen S., Duchen M. R. and Clark J. B. (1996) Energy metabolism of adult astrocytes in vitro. Neuroscience 71, 855870.
  • Poole R. C. and Halestrap A. P. (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264, C761C782.
  • Sarna G. S., Bradbury M. W., Cremer J. E., Lai J. C. and Teal H. M. (1979) Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat. Brain Res. 160, 6983.
  • Schmidt K. C., Mies G., Dienel G. A., Cruz N. F., Crane A. M. and Sokoloff L. (1995) Analysis of time courses of metabolic precursors and products in heterogeneous rat brain tissue: limitations of kinetic modeling for predictions of intracompartmental concentrations from total tissue activity. J. Cereb. Blood Flow Metab. 15, 474484.
  • Shank R. P., Bennett G. S., Freytag S. O. and Campbell G. L. (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329, 364367.
  • Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O. and Shinohara M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897916.
  • Szutowicz A., Bielarczyk H., Kisielevski Y., Jankowska A., Madziar B. and Tomaszewicz M. (1998) Effects of aluminum and calcium on acetyl-CoA metabolism in rat brain mitochondria. J. Neurochem. 71, 24472453.
  • Takano T., Tian G. F., Peng W., Lou N., Libionka W., Han X. and Nedergaard M. (2006) Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260267.
  • Toga A. W. and Collins R. C. (1981) Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations. J. Comp. Neurol. 199, 443464.
  • Tyce G. M., Ogg J. and Owen C. A. Jr (1981) Metabolism of acetate to amino acids in brains of rats after complete hepatectomy. J. Neurochem. 36, 640650.
  • Van den Berg C. J. and Ronda G. (1976) The incorporation of double-labelled acetate into glutamate and related amino acids from adult mouse brain: compartmentation of amino acid metabolism in brain. J. Neurochem. 27, 14431448.
  • Van den Berg C. J., Krzalic L., Mela P. and Waelsch H. (1969) Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem. J. 113, 281290.
  • Volterra A. and Meldolesi J. (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626640.
  • Walz W. (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem. Int. 36, 291300.
  • Waniewski R. A. and Martin D. L. (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci. 18, 52255233.
  • Webster L. T. Jr (1963) Studies of the acetyl coenzyme A synthetase reaction. I. Isolation and characterization of the enzyme-bound acetyl adenylate. J. Biol. Chem. 238, 40104015.
  • Webster L. T. Jr (1965) Studies of the acetyl coenzyme A synthetase reaction. II. Crystalline acetyl coenzyme A synthetase. J. Biol. Chem. 240, 41584163.
  • Webster L. T. Jr (1966) Studies of the acetyl coenzyme A synthetase reaction. IV. The requirement for monovalent cations. J. Biol. Chem. 241, 55045510.
  • Webster L. T. Jr (1967) Studies of the acetyl coenzyme A synthetase reaction. V. The requirement for monovalent and divalent cations in partial reactions involving enzyme-bound acetyl adenylate. J. Biol. Chem. 242, 12321240.
  • Wiemer E. A., Ter Kuile B. H., Michels P. A. and Opperdoes F. R. (1992) Pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei is mediated by a facilitated diffusion carrier. Biochem. Biophys. Res. Commun. 184, 10281034.
  • Yip V., Carter J. G., Pusateri M. E., McDougal D. B. Jr and Lowry O. H. (1991) Distribution in brain and retina of four enzymes of acetyl CoA synthesis in relation to choline acetyl transferase and acetylcholine esterase. Neurochem. Res. 16, 629635.
  • Yu A. C. H., Drejer J., Hertz L. and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 14841487.