SEARCH

SEARCH BY CITATION

References

  • Amit M., Carpenter M. K., Inokuma M. S., Chiu C. P., Harris C. P., Waknitz M. A., Itskovitz-Eldor J. and Thomson J. A. (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271278.
  • Bayer S. A. and Altman J. (1991) Neurocortical Development. Raven Press, New York.
  • Ben-Hur T., Idelson M., Khaner H., Pera M., Reinhartz E., Itzik A. and Reubinoff B. E. (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22, 12461255.
  • Bing G. Y., Notter M. F., Hansen J. T. and Gash D. M. (1988) Comparison of adrenal medullary, carotid body and PC12 cell grafts in 6-OHDA lesioned rats. Brain Res. Bull. 20, 399406.
  • Bird J. M and Kimber S. J. (1984) Oligosaccharides containing fucose linked alpha(1-3) and alpha(1-4) to N-acetylglucosamine cause decompaction of mouse morulae. Dev. Biol. 104, 449460.
  • Bjorklund L. M., Sanchez-Pernaute R., Chung S. et al. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA 99, 23442349.
  • Bohn M. C., Cupit L., Marciano F. and Gash D. M. (1987) Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 237, 913916.
  • Brederlau A., Correia A. S., Anisimov S. V. et al. (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24, 14331440.
  • Capela A. and Temple S. (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as noependymal. Neuron 35, 865875.
  • Capela A. and Temple S. (2006) LeX is expressed by principle progenitor cells in the embryonic nervous system, is secreted into their environment and binds Wnt-1. Dev. Biol. 291, 300313.
  • Chang M. Y., Park C. H., Lee S. Y and Lee S. H. (2004) Properties of cortical precursor cells cultured long term are similar to those of precursors at later developmental stages. Brain Res. Dev. Brain Res. 153, 8996.
  • Chung S., Shin B. S., Hwang M., Lardaro T., Kang U. J., Isacson O. and Kim K. S. (2006) Neural precursors derived from embryonic stem cells, but not those from fetal ventral mesencephalon, maintain the potential to differentiate into dopaminergic neurons after expansion in vitro. Stem Cells 24, 15831593.
  • Damier P., Hirsch E. C., Agid Y. and Graybiel A. M. (1999) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 122, 14211436.
  • Draper J. S., Smith K., Gokhale P., Moore H. D., Maltby E., Johnson J., Meisner L., Zwaka T. P., Thomson J. A. and Andrews P. W. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 5354.
  • Espejo E. F., Montoro R. J., Armengol J. A. and Lopez-Barneo J. (1998) Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron 20, 197206.
  • Gall C. M., Hendry S. H., Seroogy K. B., Jones E. G. and Haycock J. W. (1987) Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb. J. Comp. Neurol. 266, 307318.
  • Galpern W. R., Burns L. H., Deacon T. W, Dinsmore J. and Isacson O. (1996) Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson’s disease: functional recovery and graft morphology. Exp. Neurol. 140, 113.
  • Gaspar P., Ben Jelloun N. and Febvret A. (1994) Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. J. Neurosci. 61, 293305.
  • Hitoshi S., Seaberg R. M., Koscik C., Alexson T., Kusunoki S., Kanazawa I., Tsuji S. and Van Der Kooy D. (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev. 18, 18061811.
  • Imreh M. P., Gertow K., Cedervall J. et al. (2006) In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J. Cell. Biochem. 99, 508516.
  • Jacobson M. (1991). Developmental Neurobiology. Plenum Press, New York.
  • Kim J. H., Auerbach J. M., Rodrı′guez-Go′mez J. A. et al. (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 5056.
  • Ko J. Y., Lee J. Y., Park C. H. and Lee S. H. (2005) Effect of cell-density on in vitro dopaminergic differentiation of mesencephalic precursor cells. Neuroreport 16, 499503.
  • Lee S. H., Lumelsky N., Studer L., Auerbach J. M. and McKay R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675679.
  • Liste I., Garcia-Garcia E. and Martinez-Serrano A. (2004a) The generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo. J. Neurosci. 24, 1078610795.
  • Liste I., Navarro B., Johansen J., Bueno C., Villa A., Johansen T. E. and Martinez-Serrano A. (2004b) Low-level tyrosine hydroxylase (TH) expression allows for the generation of stable TH+ cell lines of human neural stem cells. Hum. Gene Ther. 15, 1320.
  • Maitra A., Arking D. E., Shivapurkar N. et al. (2005) Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37, 10991103.
  • Martinat C., Bacci J. J., Leete T., Kim J., Vanti W. B., Newman A. H., Cha J. H., Gether U., Wang H. and Abeliovich A. (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc. Natl Acad. Sci. USA 103, 28742879.
  • Max S. R., Bossio A. and Iacovitti L. (1996) Co-expression of tyrosine hydroxylase and glutamic acid decarboxylase in dopamine differentiation factor-treated striatal neurons in culture. Brain Res. Dev. Brain Res. 91, 140142.
  • McRitchie D. A., Hardman C. D. and Halliday G. M. (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J. Comp. Neurol. 364, 121150.
  • Mendez I., Sanchez-Pernaute R., Cooper O., Viñuela A., Ferrari D., Björklund L., Dagher A. and Isacson O. (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128, 14981510.
  • Okabe S., Forsberg-Nilsson K., Spiro A. C., Segal M. and McKay R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89102.
  • Park C. H., Minn Y. K., Lee J. Y. et al. (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem. 92, 12651276.
  • Park C. H., Kang J. S., Kim J. S. et al. (2006) Differential actions of the proneural genes Mash1 and neurogenins in Nurr1-induced dopamine neuron differentiation. J. Cell Sci. 119, 23102320.
  • Perrier A. L., Tabar V., Barberi T., Rubio M. E., Bruses J., Topf N., Harrison N. L. and Studer L. (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 1254312548.
  • Qian X., Shen O., Goderia S. K., He W., Capela A., Davis A. A. and Temple S. (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 6980.
  • Reubinoff B. E., Pera M. F., Fong C. Y., Trounson A. and Bongso A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399404.
  • Roy N. S., Cleren C., Singh S. K., Yang L., Beal M. F. and Goldman S. A. (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 12, 12591268.
  • Schulz T. C., Noggle S. A., Palmarini G. M., Weiler D. A., Lyons I. G., Pensa K. A., Meedeniya A. C., Davidson B. P., Lambert N. A. and Condie B. G. (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22, 12181238.
  • Shen Q., Goderie S. K., Jin L., Karanth N., Sun Y., Abramova N., Vincent P., Pumiglia K. and Temple S. (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 13381340.
  • Shim J. W., Koh H. C., Chang M. Y., Roh E., Choi C. Y., Oh Y. J., Son H., Lee Y. S., Studer L. and Lee S. H. (2004) Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J. Neurosci. 24, 843852.
  • Thompson L., Barraud P., Andersson E., Kirik D. and Bjorklund A. (2005) Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J. Neurosci. 25, 64676477.
  • Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S. and Jones J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 11451147.
  • Yamada T., McGeer P. L., Baimbridge K. G. and McGeer E. G. (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 256, 303307.
  • Yan J., Studer L. and McKay R. D. (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J. Neurochem. 76, 307311.
  • Ye W., Shimamura K., Rubenstein J. L., Hynes M. A. and Rosenthal A. (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755766.
  • Zeng X., Cai J., Chen J. et al. (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22, 925940.