• astrocytes;
  • BDNF;
  • GABA;
  • glutamate;
  • serotonin


The association of temporal lobe epilepsy with depression and other neuropsychiatric disorders has been known since the early beginnings of neurology and psychiatry. However, only recently have in vivo and ex vivo techniques such as Positron Emission Tomography, Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in combination with refined animal models and behavioral tests made it possible to identify an emerging pattern of common pathophysiological mechanisms. We now have growing evidence that in both disorders altered interaction of serotonergic and noradrenergic neurons with glutamatergic systems is associated with abnormal neuronal circuits and hyperexcitability. Neuronal hyperexcitability can possibly evoke seizure activity as well as disturbed emotions. Moreover, decreased synaptic levels of neurotransmitters and high glucocorticoid levels influence intracellular signaling pathways such as cAMP, causing disturbances of brain-derived and other neurotrophic factors. These may be associated with hippocampal atrophy seen on Magnetic Resonance Imaging and memory impairment as well as altered fear processing and transient hypertrophy of the amygdala. Positron Emission Tomography studies additionally suggest hypometabolism of glucose in temporal and frontal lobes. Last, but not least, in temporal lobe epilepsy and depression astrocytes play a role that reaches far beyond their involvement in hippocampal sclerosis and ultimately, therapeutic regulation of glial-neuronal interactions may be a target for future research. All these mechanisms are strongly intertwined and probably bidirectional such that the structural and functional alterations from one disease increase the risk for developing the other. This review provides an integrative update of the most relevant experimental and clinical data on temporal lobe epilepsy and its association with depression.