• NMDA receptor;
  • phencyclidine;
  • schizophrenia


Neurodegeneration induced by the NMDA receptor antagonist, phencyclidine (PCP), has been used to model the pathogenesis of schizophrenia in the developing rat. Acute and sub-chronic administration of PCP in perinatal rats results in different patterns of neurodegeneration. The potential role of an alteration in the membrane expression of NMDA receptors in PCP-induced degeneration is unknown. Acute PCP treatment on postnatal day 7 increased membrane levels of both NMDA receptor subunit 1 (NR1) and NMDA receptor subunit 2B (NR2B) proteins in the frontal cortex; conversely, NR1 and NR2B protein levels in the endoplasmic reticulum fraction were decreased. Acute PCP administration also resulted in increased membrane cortical protein levels of post-synaptic density-95, as well as the activation of calpain, which paralleled the observed increase in membrane expression of NR1 and NR2B. Further, administration of the calpain inhibitor, MDL28170, prevented PCP-induced up-regulation of NR1 and NR2B. On the other hand, sub-chronic PCP treatment on postnatal days 7, 9 and 11 caused an increase in NR1 and NR2A expression, which was accompanied by an increase in both NR1 and NR2A in the endoplasmic reticulum fraction. Sub-chronic PCP administration did not alter levels of post-synaptic density-95 and had no effect on activation of calpain. These data suggest that increased trafficking accounts for up-regulation of cortical NR1/NR2B subunits following acute PCP administration, while increased protein synthesis likely accounts for the increased expression of NR1/NR2A following sub-chronic PCP treatment of the developing rat. These results are discussed in the context of the differential neurodegeneration caused by acute and subchronic PCP administration in the developing rat brain.