SEARCH

SEARCH BY CITATION

References

  • Berry M. D. and Boulton A. A. (2000) Glyceraldehyde-3-phosphate dehydrogenase and apoptosis. J. Neurosci. Res. 60, 150154.
  • Calvert P. D., Strissel K. J., Schiesser W. E., Pugh Jr E. N. and Arshavsky V. Y. (2006) Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol. 16, 560568.
  • Chen J., Wu M., Sezate S. A. and McGinnis J. F. (2007) Light Threshold-Controlled Cone α-Transducin Translocation. Invest. Ophthalmol. Vis. Sci. 48, 33503355.
  • Dastoor Z. and Dreyer J. L. (2001) Potential role of nuclear translocation of glyceradehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress, J. Cell Sci. 114, 16431653.
  • Elias R. V., Sezate S. S., Cao W. and McGinnis J. F. (2004) Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells. Mol Vis 10, 672681.
  • Filipek S., Krzysko K. A., Fotiadis D., Liang Y., Saperstein D. A., Engel A. and Palczewski K. A. (2004) concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface. Photochem Photobiol Sci. 3, 628638.
  • Giessl A., Pulvermuller A., Trojan P., Park J. H., Choe H. W., Ernst O. P., Hofmann K. P. and Wolfrum U. (2004) Differential expression and interaction with the visual G-protein transducin of centrin isoforms in mammalian photoreceptor cells. J. Biol. Chem. 279, 5147251481.
  • Giessl A., Trojan P., Rausch S., Pulvermuller A. and Wolfrum U. (2006) Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium. Vision Res. 46, 45024509.
  • Grosse F., Nasheuer H. P., Scholtissek S. and Schomburg U. (1986) Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. Eur. J. Biochem. 160, 459467.
  • Han X., Ramanadham S., Turk J. and Gross R. W. (1998) Reconstitution of membrane fusion between pancreatic islet secretory granules and plasma membranes: catalysis by a protein constituent recognized by monoclonal antibodies directed against glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1414, 95107.
  • Hardie R. (2002) Adaptation through translocation. Neuron 34, 35.
  • Hsu S. C. and Molday R. S. (1990) Glyceraldehyde-3-phosphate dehydrogenase is a major protein associated with the plasma membrane of retinal photoreceptor outer segments. J. Biol. Chem. 265, 1330813313.
  • Hsu S. C. and Molday R. S. (1991) Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J. Biol. Chem. 266, 2174521752.
  • Huitorel P. and Pantaloni D. (1985) Bundling of microtubules by glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP. Eur. J. Biochem. 150, 265269.
  • Ishitani R., Tanaka M., Sunaga K., Katsube N. and Chuang D. M. (1998) Nuclear localization of overexpressed glyceradehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis, Mol. Pharmacol. 53, 701707.
  • Kassai H., Aiba A., Nakao K. et al. (2005) Farnesylation of retinal transducin underlies its translocation during light adaptation. Neuron. 47, 529539.
  • Kaufman D. L., McGinnis J. F., Krieger N. R. and Tobin A. J. (1986) Brain glutamate decarboxylase cloned in lambda gt-11: fusion protein produces gamma-aminobutyric acid. Science. 232, 11381140.
  • Kunimoto M., Shibata K. and Miura T. (1989) Comparison of the cytoskeleton fractions of rat red blood cells prepared with non-ionic detergents. J Biochem (Tokyo) 105, 190195.
  • Lee R. H., Brown B. M. and Lolley R. N. (1990a) Protein kinase A phosphorylates retinal phosducin on serine 73 in situ. J. Biol. Chem. 265, 1586015866.
  • Lee R. H., Fowler A., McGinnis J. F., Lolley R. N. and Craft C. M. (1990b) Amino acid and cDNA sequence of bovine phosducin, a soluble phosphoprotein from photoreceptor cells. J. Biol. Chem. 265, 1586715873.
  • Matsuda T and Cepko C. L. (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA 101, 1622.
  • Matsumoto H. and Komori N.(1999) Protein identification on two-dimensional gels archived nearly two decades ago by in-gel digestion and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 270, 176179.
  • Mazzola J. L. and Sirover M. A. (2003) Subcellular localization of human glyceradehyde-3-phosphate dehydrogenase is independent of its glycolytic function. Biochim. Biophys. Acta 1622, 5056.
  • Meyer-Siegler K., Mauro D. J., Seal G., Wurzer J., DeRiel J. K. and Sirover M. A. (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl Acad. Sci. U. S. A. 88, 84608464.
  • Morgenegg G., Winkler G. C., Hubscher U., Heizmann C. W., Mous J. and Kuenzle C. C. (1986) Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J. Neurochem. 47, 5462.
  • Nair K. S., Hanson S. M., Mendez A. et al. (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron. 46, 555567.
  • Nakagawa T., Hirano Y., Inomata A., Yokota S., Miyachi K., Kaneda M., Umeda M., Furukawa K., Omata S. and Horigome T. (2003) Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. J. Biol. Chem. 278, 2039520404.
  • Nakamura S. and Rodbell M. (1991) Glucagon induces disaggregation of polymer-like structures of the alpha subunit of the stimulatory G protein in liver membranes. Proc Natl Acad Sci U S A; 88, 71507154.
  • Park P. S., Filipek S., Wells J. W. and Palczewski K. (2004) Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry. 43, 1564315656.
  • Peterson J. J., Orisme W., Fellows J., McDowell J. H., Shelamer C. L., Dugger D. R. and Smith W. C. (2005) A role for cytoskeletal elements in the light-driven translocation of proteins in rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 46, 39883998.
  • Philp N. J., Chan G. W. and Long K. (1987) Light-stimulated movement in rod photoreceptor cells of the rat retina. FEBS. 225, 127131.
  • Reidel B., Gieβl A. and Wolfrum U.(2006) Arrestin and Transducin Translocation Associated with the Dark Adaptation of Rod Photoreceptor cells Are Fully Dependent on the Cytoskeleton (Abstract). Invest. Ophthalmol. Vis. Sci. 47, p. 264. ARVO E-Abstract 5528.
  • Rodieck R. W. (1998) The First Steps in Seeing. First Edition. pp. 371400. Sinauer Associates, Sunderland, MA.
  • Rosenzweig D. H., Nair K. S., Wei J. et al. (2007a) Subunit Dissociation and Diffusion Determine the Subcellular Localization of Rod and Cone Transducins. J of Neurosci. 27, 54845494.
  • Rosenzweig D. H., Nair K. S., Wang Q., Wei J., Garwin G. G., Hurley J. B. and Slepak V. Z.(2007b) The Role of Subunit Dissociation in Light-Induced Transducin Migration in Rods and Cones. Invest. Ophthalmol. Vis. Sci. 48, p. 56. ARVO E-Abstract 1114.
  • Sawa A., Khan A. A., Hester L. D. and Snyder S. H. (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death, Proc. Natl. Acad. Sci. USA 94, 1166911674.
  • Schlafer M., Volknandt W. and Zimmermann H. (1994) Putative synaptic vesicle nucleotide transporter identified as glyceraldehyde-3-phosphate dehydrogenase. J. Neurochem. 63, 19241931.
  • Senatorov V. V., Charles V., Reddy P. H., Tagle D. A. and Chuang D. M. (2003) Overexpression and nuclear accumulation of glyceradehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington’s disease, Mol. Cell. Neurosci. 22, 285297.
  • Singh R and Green M. R. (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science. 259, 365368.
  • Sirover M. A. (1997) Role of the glycolytic protein, glyceraldeyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology, J. Cell. Biochem. 66, 133140.
  • Sirover M. A. (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432, 159184.
  • Sirover M. A. (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell. Biochem. 95, 4552.
  • Sokolov M., Lyubarsky A. L., Strissel K. J., Savchenko A. B., Govardovskii V. I., Pugh Jr E. N. and Arshavsky V. Y. (2002) Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron. 34, 95106.
  • Stenkamp R. E., Teller D. C. and Palczewski K. (2005) Rhodopsin: a structural primer for G-protein coupled receptors. Arch Pharm (Weinheim) 338, 209216.
  • Tanner M. J. and Gray W. R. (1971) The isolation and functional identification of a protein from the human erythrocyte ‘ghost’. J. Biochem. 125, 11091117.
  • Tatton N. A. (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol. 166, 2943.
  • Waingeh V. F., Gustafson C. D., Kozliak E. I., Lowe S. L., Knull H. R. and Thomasson K. A. (2006) Glycolytic enzyme interactions with yeast and skeletal muscle F-actin. Biophys. J. 90, 13711384.
  • Whelan J. P. and McGinnis J. F. (1988) Light-dependent subcellular movement of photoreceptor proteins. J. Neurosci. Res. 20, 263270.
  • Wolfrum U., Giessl A. and Pulvermuller A. (2002) Centrins, a novel group of Ca2+-binding proteins in vertebrate photoreceptor cells. Adv. Exp. Med. Biol. 514, 155178.
  • Yoshida T., Willardson B. M., Wilkins J. F., Jensen G. J., Thornton B. D. and Bitensky M. W. (1994) The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 269, 2405024057.