SEARCH

SEARCH BY CITATION

References

  • Akabas M. H. and Karlin A. (1995) Identification of acetylcholine receptor channel-lining residues in the M1 Segment of the alpha-subunit. Biochemistry 34, 1249612500.
  • Barrantes F. J. (2003) Modulation of nicotinic acetylcholine receptor function through the outer and middle rings of transmembrane domains. Curr. Opin. Drug Discov. Dev. 6, 620632.
  • Beckstead M. J., Phelan R., Trudell J. R., Bianchini M. J. and Mihic S. J. (2002) Anesthetic and ethanol effects on spontaneously opening glycine receptor channels. J. Neurochem. 82, 13431351.
  • Bera A. K., Chatav M. and Akabas M. H. (2002) GABAA receptor M2-M3 loop secondary structure and changes in accessibility during channel gating. J. Biol. Chem. 277, 4300243010.
  • Bertaccini E. and Trudell J. R. (2002) Predicting the transmembrane secondary structure of ligand-gated ion channels. Protein Eng. 15, 443453.
  • Bertaccini E., Shapiro J., Brutlag D. and Trudell J. R. (2005a) Homology modeling of a human glycine alpha 1 receptor reveals a plausible anesthetic binding site. J. Chem. Inf. Model. 45, 128135.
  • Bertaccini E., Trudell J. R. and Lindahl E. (2005b) Normal mode analysis reveals the channel gating motion within a ligand gated ion channel model. Int. Cong. Ser. 1283, 160163.
  • Bertaccini E. J., Trudell J. R. and Franks N. P. (2007) The common chemical motifs within anesthetic binding sites. Anesth. Analg. 104, 318324.
  • Bertaccini E. J., Lindahl E. and Trudell J. R. (2007) Normal mode analysis of the Glycine alpha 1 receptor by three separate methods. J. Chem. Inf. Model. 47, 15721579.
  • Betz H. and Laube B. (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J. Neurochem. 97, 16001610.
  • Blanton M. P. and Cohen J. B. (1994) Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33, 28592872.
  • Blanton M. P., Li Y. M., Stimson E. R., Maggio J. E. and Cohen J. B. (1994) Agonist-induced photoincorporation of a p-benzoylphenylalanine derivative of substance P into membrane-spanning region 2 of the Torpedo nicotinic acetylcholine receptor delta subunit. Mol. Pharmacol. 46, 10481055.
  • Blanton M. P., Dangott L. J., Raja S. K., Lala A. K. and Cohen J. B. (1998a) Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound 2-[3H]diazofluorene. J. Biol. Chem. 273, 86598668.
  • Blanton M. P., McCardy E. A., Huggins A. and Parikh D. (1998b) Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16. Biochemistry 37, 1454514555.
  • Bocquet N., Prado de Carvalho L., Cartaud J., Neyton J., Le Poupon C., Taly A., Grutter T., Changeux J.-P. and Corringer P.-J. (2007) A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116119.
  • Bondarenko V., Xu Y. and Tang P. (2007) Structure of the first transmembrane domain of the neuronal acetylcholine receptor β2 subunit. Biophys. J. 92, 16161622.
  • Brejc K., van Dijk W. J., Klaassen R. V., Schuurmans M., van Der O. J., Smit A. B. and Sixma T. K. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269276.
  • Campagna-Slater V. and Weaver D. F. (2007) Molecular modelling of the GABAA ion channel protein. J. Mol. Graph. Model. 25, 721730.
  • Castaldo P., Stefanoni P., Miceli F. et al. (2004) A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor alpha1 subunit reduces membrane expression and impairs gating by agonists. J. Biol. Chem. 279, 2559825604.
  • Cheng M. H., Cascio M. and Coalson R. D. (2007a) Homology modeling and molecular dynamics simulations of the alpha1 glycine receptor reveals different states of the channel. Proteins 68, 581593.
  • Cheng X., Ivanov I., Wang H., Sine S. M. and McCammon J. A. (2007b) Nanosecond-timescale conformational dynamics of the human α7 nicotinic acetylcholine receptor. Biophys. J. 93, 26222634.
  • Crawford D. K., Trudell J. R., Bertaccini E. J., Li K., Davies D. L. and Alkana R. L.(2007) Evidence that ethanol acts on a target in Loop 2 of the extracellular domain of alpha1 glycine receptors. J. Neurochem. 102, 20972109.
  • Dang H., England P. M., Farivar S. S., Dougherty D. A. and Lester H. A. (2000) Probing the role of a conserved M1 proline residue in 5-hydroxytryptamine(3) receptor gating. Mol. Pharmacol. 57, 11141122.
  • Dellisanti C. D., Yao Y., Stroud J. C., Wang Z.-Z. and Chen L. (2007) Crystal structure of the extracellular domain of nAChR [alpha]1 bound to [alpha]-bungarotoxin at 1.94 Å resolution. Nat. Neurosci. 10, 953962.
  • England P. M., Zhang Y., Dougherty D. A. and Lester H. A. (1999) Backbone mutations in transmembrane domains of a ligand-gated ion channel: implications for the mechanism of gating. Cell 96, 8998.
  • Ernst M., Bruckner S., Boresch S. and Sieghart W. (2005) Comparative models of GABAA receptor extracellular and transmembrane domains: important insights in pharmacology and function. Mol. Pharmacol. 68, 12911300.
  • Findlay G. S., Ueno S., Harrison N. L. and Harris R. A. (2001) Allosteric modulation in spontaneously active mutant gamma-aminobutyric acidA receptors. Neurosci. Lett. 305, 7780.
  • Hemmings Jr H. C., Akabas M. H., Goldstein P. A., Trudell J. R., Orser B. A. and Harrison N. L. (2005) Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol. Sci. 26, 503510.
  • Horenstein J., Wagner D. A., Czajkowski C. and Akabas M. H. (2001) Protein mobility and GABA-induced conformational changes in GABA(A) receptor pore-lining M2 segment. Nat. Neurosci. 4, 477485.
  • Hughson A. G., Lee G. F. and Hazelbauer G. L. (1997) Analysis of protein structure in intact cells: crosslinking in vivo between introduced cysteines in the transmembrane domain of a bacterial chemoreceptor. Protein Sci. 6, 315322.
  • Jenkins A., Greenblatt E. P., Faulkner H. J. et al. (2001) Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J. Neurosci. 21, RC136.
  • Jung S. and Harris R. A. (2006) Sites in TM2 and 3 are critical for alcohol-induced conformational changes in GABA receptors. J. Neurochem. 96, 885892.
  • Jung S., Akabas M. H. and Harris R. A. (2005) Functional and structural analysis of the GABAA receptor alpha 1 subunit during channel gating and alcohol modulation. J. Biol. Chem. 280, 308316.
  • Keramidas A., Kash T. L. and Harrison N. L. (2006) The pre-M1 segment of the alpha1 subunit is a transduction element in the activation of the GABAA receptor. J. Physiol. 575, 1122.
  • Kruse S. W., Zhao R., Smith D. P. and Jones D. N. (2003) Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat. Struct. Biol. 10, 694700.
  • Lee G. F., Dutton D. P. and Hazelbauer G. L. (1995a) Identification of functionally important helical faces in transmembrane segments by scanning mutagenesis. Proc. Natl Acad. Sci. USA 92, 54165420.
  • Lee G. F., Lebert M. R., Lilly A. A. and Hazelbauer G. L. (1995b) Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo. Proc. Natl Acad. Sci. USA 92, 33913395.
  • Leite J. F. and Cascio M. (2001) Structure of ligand-gated ion channels: critical assessment of biochemical data supports novel topology. Mol. Cell. Neurosci. 17, 777792.
  • Leite J. F., Amoscato A. A. and Cascio M. (2000) Coupled proteolytic and mass spectrometry studies indicate a novel topology for the glycine receptor. J. Biol. Chem. 275, 1368313689.
  • Lester H. A., Dibas M. I., Dahan D. S., Leite J. F. and Dougherty D. A. (2004) Cys-loop receptors: new twists and turns. Trends Neurosci. 27, 329336.
  • Lobo I. A. and Harris R. A. (2005) Sites of alcohol and volatile anesthetic action on glycine receptors. Int. Rev. Neurobiol. 65, 5387.
  • Lobo I. A., Mascia M. P., Trudell J. R. and Harris R. A. (2004a) Channel gating of the glycine receptor changes accessibility to residues implicated in receptor potentiation by alcohols and anesthetics. J. Biol. Chem. 279, 3391933927.
  • Lobo I. A., Trudell J. R. and Harris R. A. (2004b) Cross-linking of glycine receptor transmembrane segments two and three alters coupling of ligand binding with channel opening. J. Neurochem. 90, 962969.
  • Lobo I. A., Trudell J. R. and Harris R. A. (2006) Accessibility to residues in transmembrane segment four of the glycine receptor. Neuropharmacology 50, 174181.
  • Mascia M. P., Mihic S. J., Valenzuela C. F., Schofield P. R. and Harris R. A. (1996) A single amino acid determines differences in ethanol actions on strychnine-sensitive glycine receptors. Mol. Pharmacol. 50, 402406.
  • Mascia M. P., Trudell J. R. and Harris R. A. (2000) Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc. Natl Acad. Sci. USA 97, 93059310.
  • Mihic S. J., Ye Q., Wick M. J. et al. (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389, 385389.
  • Miyazawa A., Fujiyoshi Y. and Unwin N. (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949955.
  • Ortells M. O. and Lunt G. G. (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 18, 121127.
  • Paas Y., Gibor G., Grailhe R., Savatier-Duclert N., Dufresne V., Sunesen M., de Carvalho L. P., Changeux J. P. and Attali B. (2005) Pore conformations and gating mechanism of a Cys-loop receptor. Proc. Natl Acad. Sci. USA 102, 1587715882.
  • Purohit P., Mitra A. and Auerbach A. (2007) A stepwise mechanism for acetylcholine receptor channel gating. Nature 446, 930933.
  • Rajendra S., Lynch J. W. and Schofield P. R. (1997) The glycine receptor. Pharmacol. Ther. 73, 121146.
  • Reeves D. C., Goren E. N., Akabas M. H. and Lummis S. C. (2001) Structural and electrostatic properties of the 5-HT3 receptor pore revealed by substituted cysteine accessibility mutagenesis. J. Biol. Chem. 276, 4203542042.
  • Roberts M. T., Phelan R., Erlichman B. S., Pillai R. N., Ma L., Lopreato G. F. and Mihic S. J. (2006) Occupancy of a single anesthetic binding pocket is sufficient to enhance glycine receptor function. J. Biol. Chem. 281, 33053311.
  • Rosen A., Bali M., Horenstein J. and Akabas M. H. (2007) Channel opening by anesthetics and GABA induces similar changes in the GABAA receptor M2 segment. Biophys. J. 92, 31303139.
  • Sansom M. S. P. and Weinstein H. (2000) Hinges, swivels and switches: the role of prolines in signalling via transmembrane [alpha]-helices. Trends Pharmacol. Sci. 21, 445451.
  • Sarto-Jackson I., Furtmueller R., Ernst M., Huck S. and Sieghart W. (2007) Spontaneous cross-link of mutated alpha1 subunits during GABA(A) receptor assembly. J. Biol. Chem. 282, 43544363.
  • Soskine M., Steiner-Mordoch S. and Schuldiner S. (2002) Crosslinking of membrane-embedded cysteines reveals contact points in the EmrE oligomer. Proc. Natl Acad. Sci. USA 99, 1204312048.
  • Taleb O. and Betz H. (1994) Expression of the human glycine receptor alpha 1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor density. EMBO J. 13, 13181324.
  • Taly A., Delarue M., Grutter T., Nilges M., Le Novere N., Corringer P. J. and Changeux J. P. (2005) Normal mode analysis suggest a quaternary twist model for the nicotinic receptor gating mechanism. Biophys. J. 88, 39543965.
  • Trudell J. R. and Bertaccini E. (2004) Comparative modeling of a GABAA a1 receptor using three crystal structures as templates. J. Mol. Graph. Model. 23, 3949.
  • Unwin N. (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967989.
  • Wick M. J., Mihic S. J., Ueno S., Mascia M. P., Trudell J. R., Brozowski S. J., Ye Q., Harrison N. L. and Harris R. A. (1998) Mutations of GABA and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc. Natl Acad. Sci. USA 95, 65046509.
  • Winston S. E., Mehan R. and Falke J. J. (2005) Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies. Biochemistry 44, 1265512666.
  • Yamakura T., Mihic S. J. and Harris R. A. (1999) Amino acid volume and hydropathy of a transmembrane site determine glycine and anesthetic sensitivity of glycine receptors. J. Biol. Chem. 274, 2300623012.
  • Yamakura T., Bertaccini E., Trudell J. R. and Harris R. A. (2001) Anesthetics and ion channels: molecular models and sites of anesthetic action. Ann. Rev. Pharmacol. Toxicol. 41, 2351.
  • Yang K., Farrens D. L., Altenbach C., Farahbakhsh Z. T., Hubbell W. L. and Khorana H. G. (1996) Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels. Biochemistry 35, 1404014046.
  • Yang Z., Webb T. I. and Lynch J. W. (2007) Closed-state crosslinking of adjacent beta 1 subunits in alpha 1beta 1 GABA-A receptors via 6′ introduced cysteines. J. Biol. Chem. 282, 1680316810.