SEARCH

SEARCH BY CITATION

References

  • Albers D. S. and Sonsalla P. K. (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J. Pharmacol. Exp. Ther. 275, 11041114.
  • Benkovic S. A., O’Callaghan J. P. and Miller D. B. (2004) Sensitive indicators of injury reveal hippocampal damage in C57BL/6J mice treated with kainic acid in the absence of tonic-clonic seizures. Brain Res. 1024, 5976.
  • Block M. L., Zecca L. and Hong J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 8, 5769.
  • Bowyer J. F., Davies D. L., Schmued L., Broening H. W., Newport G. D., Slikker Jr W. and Holson R. R. (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J. Pharmacol. Exp. Ther. 268, 15711580.
  • Brown I. R. (1990) Induction of heat shock (stress) genes in the mammalian brain by hyperthermia and other traumatic events: a current perspective. J. Neurosci. Res. 27, 247255.
  • Brown J. M., Hanson G. R. and Fleckenstein A. E. (2001) Regulation of the Vesicular Monoamine Transporter-2: A Novel Mechanism for Cocaine and Other Psychostimulants. J. Pharmacol. Exp. Ther. 296, 762767.
  • Butcher S. P., Fairbrother I. S., Kelly J. S. and Arbuthnott G. W. (1988) Amphetamine-induced dopamine release in the rat striatum: an in vivo microdialysis study. J. Neurochem. 50, 346355.
  • Cadet J. L., Ali S. and Epstein C. (1994) Involvement of oxygen-based radicals in methamphetamine-induced neurotoxicity: evidence from the use of CuZnSOD transgenic mice. Ann N Y Acad Sci. 738, 388391.
  • Cadet J. L., Krasnova I. N., Jayanthi S. and Lyles J. (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res. 11, 183202.
  • Cassiani-Ingoni R., Muraro P. A., Magnus T. et al. (2007) Disease progression after bone marrow transplantation in a model of multiple sclerosis is associated with chronic microglial and glial progenitor response. J. Neuropathol. Exp. Neurol. 66, 637649.
  • Chang L., Alicata D., Ernst T. and Volkow N. (2007) Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102(Suppl 1), 1632.
  • Fleckenstein A. E., Volz T. J., Riddle E. L., Gibb J. W. and Hanson G. R. (2007) New insights into the mechanism of action of amphetamines. Annu. Rev. Pharmacol. Toxicol. 47, 681698.
  • Fon E. A., Pothos E. N., Sun B. C., Killeen N., Sulzer D. and Edwards R. H. (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19, 12711283.
  • Fornai F., Lazzeri G., Lenzi P. et al. (2003) Amphetamines induce ubiquitin-positive inclusions within striatal cells. Neurol Sci. 24, 182183.
  • Fornstedt B. and Carlsson A. (1989) A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. J Neural Transm. 76, 155161.
  • Fumagalli F., Gainetdinov R. R., Wang Y. M., Valenzano K. J., Miller G. W. and Caron M. G. (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J. Neurosci. 19, 24242431.
  • Horowitz M. and Robinson S. D. (2007) Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. Prog. Brain Res. 162, 433446.
  • Hsu S. F., Niu K. C., Lin C. L. and Lin M. T. (2006) Brain cooling causes attenuation of cerebral oxidative stress, systemic inflammation, activated coagulation, and tissue ischemia/injury during heatstroke. Shock 26, 210220.
  • Imam S. Z., Newport G. D., Itzhak Y., Cadet J. L., Islam F., Slikker W. and Ali S. F. (2001) Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase. J. Neurochem. 76, 745749.
  • Inoue O., Axelsson S., Lundqvist H., Oreland L. and Langstrom B. (1990) Effect of reserpine on the brain uptake of carbon 11 methamphetamine and its N-propagyl derivative, deprenyl. Eur. J. Nucl. Med. 17, 121126.
  • Kim Y. S., Choi D. H., Block M. L. et al. (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J., 21, 179187.
  • Kita T., Wagner G. C., Philbert M. A., King L. A. and Lowndes H. E. (1995) Effects of pargyline and pyrogallol on the methamphetamine-induced dopamine depletion. Mol. Chem. Neuropathol. 24, 3141.
  • Klegeris A., McGeer E. G. and McGeer P. L. (2007) Therapeutic approaches to inflammation in neurodegenerative disease. Curr. Opin. Neurol. 20, 351357.
  • Kuhn D. M., Arthur Jr R. E., Thomas D. M. and Elferink L. A. (1999) Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J. Neurochem. 73, 13091317.
  • Kuhn D. M., Sakowski S. A., Sadidi M. and Geddes T. J. (2004) Nitrotyrosine as a marker for peroxynitrite-induced neurotoxicity: the beginning or the end of the end of dopamine neurons? J. Neurochem. 89, 529536.
  • Larsen K. E., Fon E. A., Hastings T. G., Edwards R. H. and Sulzer D. (2002) Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J. Neurosci. 22, 89518960.
  • LaVoie M. J. and Hastings T. G. (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J. Neurosci. 19, 14841491.
  • LaVoie M. J., Card J. P. and Hastings T. G. (2004) Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp. Neurol. 187, 4757.
  • Le W., Rowe D., Xie W., Ortiz I., He Y. and Appel S. H. (2001) Microglial activation and dopaminergic cell injury: An in vitro model relevant to Parkinson’s Disease. J. Neurosci., 21, 84478455.
  • Lyles J. and Cadet J. L. (2003) Methylenedioxymethamphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Res. Brain Res. Rev. 42, 155168.
  • Montine T. J., Picklo M. J., Amarnath V., Whetsell Jr W. O. and Graham D. G. (1997) Neurotoxicity of endogenous cysteinylcatechols. Exp. Neurol. 148, 2633.
  • Moy L. Y., Zeevalk G. D. and Sonsalla P. K. (2000) Role for dopamine in malonate-induced damage in vivo in striatum and in vitro in mesencephalic cultures. J. Neurochem. 74, 16561665.
  • O’Callaghan J. P. and Miller D. B. (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther. 270, 741751.
  • O’Dell S. J., Weihmuller F. B. and Marshall J. F. (1991) Multiple methamphetamine injections induce marked increases in extracellular striatal dopamine which correlate with subsequent neurotoxicity. Brain Res. 564, 256260.
  • Park S. U., Ferrer J. V., Javitch J. A. and Kuhn D. M. (2002) Peroxynitrite inactivates the human dopamine transporter by modification of cysteine 342: potential mechanism of neurotoxicity in dopamine neurons. J. Neurosci. 22, 43994405.
  • Park S., Geddes T. J., Javitch J. A. and Kuhn D. M. (2003) Dopamine prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide: is nitrotyrosine formation an early step in dopamine neuronal damage? J. Biol. Chem. 278, 2873628742.
  • Schmidt C. J., Ritter J. K., Sonsalla P. K., Hanson G. R. and Gibb J. W. (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J. Pharmacol. Exp. Ther. 233, 539544.
  • Spencer J. P., Whiteman M., Jenner P. and Halliwell B. (2002) 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. J. Neurochem. 81, 122129.
  • Streit W. J. (1990) An improved staining method for rat microglial cells using the lectin from Griffonia simplicifolia (GSA I-B4). J. Histochem. Cytochem. 38, 16831686.
  • Streit W. J. (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 40, 133139.
  • Streit W. J. (2004) Microglia and Alzheimer’s disease pathogenesis. J. Neurosci. Res. 77, 18.
  • Sulzer D., Sonders M. S., Poulsen N. W. and Galli A. (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406433.
  • Thomas D. M. and Kuhn D. M. (2005a) Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. J. Neurochem. 92, 790797.
  • Thomas D. M. and Kuhn D. M. (2005b) MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res. 1050, 190198.
  • Thomas D. M., Dowgiert J., Geddes T. J., Francescutti-Verbeem D., Liu X. and Kuhn D. M. (2004a) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci. Lett. 367, 349354.
  • Thomas D. M., Francescutti-Verbeem D. M., Liu X. and Kuhn D. M. (2004b) Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment--an oligonucleotide microarray approach. J. Neurochem. 88, 380393.
  • Thomas D. M., Walker P. D., Benjamins J. A., Geddes T. J. and Kuhn D. M. (2004c) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J. Pharmacol. Exp. Ther. 311, 17.
  • Thomas D. M., Francescutti-Verbeem D. M. and Kuhn D. M. (2006) Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J., 20, 515517.
  • Thompson P. M., Hayashi K. M., Simon S. L. et al. (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. 24, 60286036.
  • Wagner G. C. and Walsh S. L. (1991) Evaluation of the effects of inhibition of monoamine oxidase and senescence on methamphetamine-induced neuronal damage. Int. J. Dev. Neurosci. 9, 171174.
  • Wagner G. C., Lucot J. B., Schuster C. R. and Seiden L. S. (1983) Alpha-methyltyrosine attenuates and reserpine increases methamphetamine- induced neuronal changes. Brain Res. 270, 285288.
  • Weihmuller F. B., O’Dell S. J. and Marshall J. F. (1993) L-dopa pretreatment potentiates striatal dopamine overflow and produces dopamine terminal injury after a single methamphetamine injection. Brain Res. 623, 303307.
  • Whitehead R. E., Ferrer J. V., Javitch J. A. and Justice J. B. (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J. Neurochem. 76, 12421251.
  • Xia X. G., Schmidt N., Teismann P., Ferger B. and Schulz J. B. (2001) Dopamine mediates striatal malonate toxicity via dopamine transporter- dependent generation of reactive oxygen species and D2 but not D1 receptor activation. J. Neurochem. 79, 6370.
  • Yamamoto B. K. and Bankson M. G. (2005) Amphetamine neurotoxicity: cause and consequence of oxidative stress. Crit. Rev. Neurobiol. 17, 87117.
  • Yuan J., Callahan B. T., McCann U. D. and Ricaurte G. A. (2001) Evidence against an essential role of endogenous brain dopamine in methamphetamine-induced dopaminergic neurotoxicity. J. Neurochem. 77, 13381347.
  • Yuan J., Cord B. J., McCann U. D., Callahan B. T. and Ricaurte G. A. (2002) Effect of depleting vesicular and cytoplasmic dopamine on methylenedioxymethamphetamine neurotoxicity. J. Neurochem. 80, 960969.
  • Zhao H., Steinberg G. K. and Sapolsky R. M. (2007) General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J. Cereb. Blood Flow Metab. 27, 18791894.