• Avila A. M., Davila-Garcia M. I., Ascarrunz V. S., Xiao Y. and Kellar K. J. (2003) Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Mol. Pharmacol. 64, 974986.
  • Ben-Ami H. C., Yassin L., Farah H., Michaeli A., Eshel M. and Treinin M. (2005) RIC-3 affects properties and quantity of nicotinic acetylcholine receptors via a mechanism that does not require the coiled-coil domains. J. Biol. Chem. 280, 2805328060.
  • Castillo M., Mulet J., Gutierrez L. M., Ortiz J. A., Castelan F., Gerber S., Sala S., Sala F. and Criado M. (2005) Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J. Biol. Chem. 280, 2706227068.
  • Cheng A., McDonald N. A. and Connolly C. N. (2005) Cell surface expression of 5-hydroxy-tryptamine type 3 receptors is promoted by RIC-3. J. Biol. Chem. 280, 2250222507.
  • Cheng A., Bollan K. A., Greenwood S. M., Irving A. J. and Connolly C. N. (2007) Differential subcellular localization of RIC-3 isoforms and their role in determining 5-HT3 receptor composition. J. Biol. Chem. 282, 2615826166.
  • Christianson J. C. and Green W. N. (2004) Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J. 23, 41564165.
  • De Filippi G., Baldwinson T. and Sher E. (2005) Nicotinic receptor modulation of neurotransmitter release in the cerebellum. Prog.Brain Res. 148, 309320.
  • Devreotes P. N. and Fambroug D. M. (1975) Acetylcholine receptor turnover in membranes of developing muscle fibers. J. Cell Biol. 65, 335358.
  • Domínguez del Toro E., Juiz J. M., Peng X., Lindstrom J. and Criado M. (1994) Immunocytochemical localization of the α7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. J. Comp. Neurol. 349, 325342.
  • Domínguez del Toro E., Juíz J. M., Smillie F. I., Lindstrom J. and Criado M. (1997) Expression of α7 neuronal nicotinic receptors during postnatal development of the rat cerebellum. Dev. Brain Res. 98, 125133.
  • Encinas M., Iglesias M., Liu Y., Wang H., Muhaisen A., Ceña V., Gallego C. and Comella J. X. (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J. Neurochem. 75, 9911003.
  • García P. D., Ou J. H., Rutter W. J. and Walter P. (1988) Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane after signal peptide cleavage: translocation can be aborted and the product released into the cytoplasm. J. Cell Biol. 106, 10931104.
  • Garcia-Guzman M., Sala F., Sala S., Campos-Caro A. and Criado M. (1994) Role of two acetylcholine receptor subunit domains in homomer formation and intersubunit recognition, as revealed by α3 and α7 subunit chimeras. Biochemistry 33, 1519815203.
  • Guan K. L. and Dixon J. E. (1991) Eukaryotic proteins expressed in Escherichia Coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262267.
  • Halevi S., Yassin L., Eshel M., Sala F., Sala S., Criado M. and Treinin M. (2003) Conservation within the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J. Biol. Chem. 278, 3441134417.
  • Halvorsen S. W., Jiang N. and Malek R. (1995) Regulation of nicotinic acetylcholine receptors on human neuroblastoma cells during differentiation. Biochem. Pharmacol. 50, 16651671.
  • Henderson L. P., Gdovin M. J., Liu C., Gardner P. D. and Maue R. A. (1994) Nerve growth factor increases nicotinic ACh receptor gene expression and current density in wild-type and protein kinase A-deficient PC12 cells. J. Neurosci. 14, 11531163.
  • Kaiser C. A., Preuss D., Grisafi P. and Botstein D. (1987) Many random sequences functionally replace the secretion signal sequence of yeast invertase. Science 235, 312317.
  • Krieg P. A. and Melton D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 70577070.
  • Lansdell S. J., Gee V. J., Harkness P. C., Doward A. I., Baker E. R., Gibb A. J. and Millar N. S. (2005) RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Mol. Pharmacol. 68, 14311438.
  • Lindstrom J. M. (2003) Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology. Ann. NY Acad. Sci. 998, 4152.
  • Ortiz J. A., Castillo M., Domínguez del Toro E., Mulet J., Gerber S., Valor L. M., Sala S., Sala F., Gutierrez L. M. and Criado M. (2005) The cysteine-rich with EGF-like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. J. Neurochem. 95, 15851596.
  • Rehm A., Stern P., Ploegh H. L. and Tortorella D. (2001) Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. EMBO J. 20, 15731582.
  • Rogers S. W., Mandelzys A., Deneris E. S., Cooper E. and Heinemann S. (1992) The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. J. Neurosci. 12, 46114623.
  • Shaffer K. L., Sharma A., Snapp E. L. and Hedge R. S. (2005) Regulation of protein compartmentalization expands the diversity of protein function. Dev. Cell 9, 545554.
  • Sine S. M. and Engel A. G. (2006) Recent advances in Cys-loop receptor structure and function. Nature 440, 448455.
  • Williams M. E., Burton B., Urrutia A., Shcherbatko A., Chavez-Noriega L. E., Cohen C. J. and Aiyar J. (2005) Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells. J. Biol. Chem. 280, 12571263.