SEARCH

SEARCH BY CITATION

References

  • Abou-Sleiman P. M., Muqit M. M. and Wood N. W. (2006a) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci. 7, 207219.
  • Abou-Sleiman P. M., Muqit M. M., McDonald N. Q. et al. (2006b) A heterozygous effect for PINK1 mutations in Parkinson’s disease? Ann. Neurol. 60, 414419.
  • Adrain C. and Martin S. J. (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem. Sci. 26, 390397.
  • Alnemri E. S. (2007) HtrA2 and Parkinson’s disease: think PINK? Nature 9, 12271229.
  • Andersen J. K. (2004) Oxidative stress in neurodegeneration: cause or consequence. Nat. Med. 10, S18S25.
  • Beilina A., Van Der Brug M., Ahmad R., Kesavapany S., Miller D. W., Petsko G. A. and Cookson M. R. (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive Parkinsonism have differential effects on protein stability. Proc. Natl Acad. Sci. USA 102, 57035708.
  • Benn S. C. and Woolf C. J. (2004) Adult neuron survival strategies – slamming on the brake. Nat. Rev. Neurosci. 5, 686699.
  • Bentivoglio A. R., Cortelli P., Valente E. M., Ialongo T., Ferraris A., Elia A., Montagna P. and Albanese A. (2001) Phenotypic characterisation of autosomal recessive PARK6-linked Parkinsonism in three unrelated Italian families. Mov. Disord. 16, 9991006.
  • Bonifati V., Rizzu P., Van Baren M. J. et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299, 256259.
  • Bonifati V., Rohe C. F., Breedveld G. J. et al. (2005) Early-onset Parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 65, 8795.
  • Burke R. E. (2007) Programmed cell death and new discoveries in the genetics of Parkinsonism. J. Neurochem. (in press).
  • Cha G. H., Kim S., Park J., Lee E., Kim M., Lee S. B., Kim J. M., Chung J. and Cho K. S. (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc. Natl Acad. Sci. USA 102, 1034510350.
  • Chipuk J. E., Bouchier-Hayes L. and Green D. R. (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 13, 13961402.
  • Clark I. E., Dodson M. W., Jiang C., Cao J. H., Huh J. R., Seol J. H., Yoo S. J., Hay B. A. and Guo M. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with Parkin. Nature 441, 11621166.
  • Claros M. G. and Vincens P. (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779786.
  • Cookson M. R. (2003a) Pathways to Parkinsonism. Neuron 37, 710.
  • Cookson M. R. (2003b) Neurodegeneration: how does Parkin prevent Parkinson’s disease? Curr. Biol. 13, R522R524.
  • Deng H., Jankovic J., Guo Y., Xie W. and Le W. (2005) Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem. Biophys. Res. Commun. 337, 11331138.
  • Djarmati A., Hedrich K., Svetel M., Lohnau T., Schwinger E., Romac S., Pramstaller P. P., Kostic V. and Klein C. (2006) Heterozygous PINK1 mutations: a susceptibility factor for Parkinson disease? Mov. Disord. 21, 15261530.
  • Ekert P. G. and Vaux D. L. (2005) The mitochondrial death squad: hardened killers or innocent bystanders? Curr. Opin. Cell Biol. 17, 626630.
  • Endo T. and Kohda D. (2002) Functions of outer membrane receptors in mitochondrial protein import. Biochim. Biophys. Acta 1592, 314.
  • Exner N., Treske B., Paquet D. et al. (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by Parkin. J. Neurosci. 27, 1241312418.
  • Forman M. S., Lee V. M. and Trojanowski J. Q. (2005) Nosology of Parkinson’s disease: looking for the way out of a quagmire. Neuron 47, 479482.
  • Gabriel K. and Pfanner N. (2007) The mitochondrial machinery for import of precursor proteins. Methods Mol. Biol. 390, 99118.
  • Gandhi S., Muqit M. M., Stanyer L. et al. (2006) PINK1 protein in normal human brain and Parkinson’s disease. Brain 129, 17201731.
  • Gavel Y. and Von Heijne G. (1990) Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 4, 3337.
  • Glick B., Wachter C. and Schatz G. (1991) Protein import into mitochondria: two systems acting in tandem? Trends Cell Biol. 1, 99103.
  • Gosal D., Ross O. A. and Toft M. (2006) Parkinson’s disease: the genetics of a heterogeneous disorder. Eur. J Neurol. 13, 616627.
  • Grunewald A., Breedveld G. J., Lohmann-Hedrich K. et al. (2007) Biological effects of the PINK1 c.1366C>T mutation: implications in Parkinson disease pathogenesis. Neurogenetics 8, 103109.
  • Haque M. E., Thomas K. J., D'Souza C., Callaghan S., Kitada T., Slack R. S., Fraser P., Cookson M. R., Tandon A. and Park D. S. (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci USA 105, 17161721.
  • Hanks S. K. and Hunter T. (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576596.
  • Hatano Y., Li Y., Sato K. et al. (2004) Novel PINK1 mutations in early-onset Parkinsonism. Ann. Neurol. 56, 424427.
  • Healy D. G., Abou-Sleiman P. M., Gibson J. M., Ross O. A., Jain S., Gandhi S., Gosal D., Muqit M. M., Wood N. W. and Lynch T. (2004) PINK1 (PARK6) associated Parkinson disease in Ireland. Neurology 63, 14861488.
  • Henn I. H., Bouman L., Schlehe J. S. et al. (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J. Neurosci. 27, 18681878.
  • Herrmann J. M. and Neupert W. (2003) Protein insertion into the inner membrane of mitochondria. IUBMB Life 55, 219225.
  • Hiller A., Hagenah J. M., Djarmati A., Hedrich K., Reetz K., Schneider-Gold C., Kress W., Munchau A. and Klein C. (2007) Phenotype spectrum of PINK1-associated Parkinsonism in 15 mutation carriers from 1 family. Mov. Disord. 22, 145147.
  • Hoepken H. H., Gispert S., Morales B. et al. (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis. 25, 401411.
  • Hua G., Zhang Q. and Fan Z. (2007) Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J. Biol. Chem. 282, 2055320560.
  • Jauch R., Cho M. K., Jakel S., Netter C., Schreiter K., Aicher B., Zweckstetter M., Jackle H. and Wahl M. C. (2006) Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment. EMBO J. 25, 40204032.
  • Jeffrey P. D., Russo A. A., Polyak K., Gibbs E., Hurwitz J., Massague J. and Pavletich N. P. (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313320.
  • Jensen R. E. and Dunn C. D. (2002) Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim. Biophys. Acta 1592, 2534.
  • Kazlauskas A. and Cooper J. A. (1989) Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58, 11211133.
  • Kinnally K. W. and Antonsson B. (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12, 857868.
  • Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y. and Shimizu N. (1998) Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392, 605608.
  • Kitada T., Asakawa S., Matsumine H., Hattori N., Shimura H., Minoshima S., Shimizu N. and Mizuno Y. (2000) Progress in the clinical and molecular genetics of familial Parkinsonism. Neurogenetics 2, 207218.
  • Kitada T., Pisani A., Porter D. R., Yamaguchi H., Tscherter A., Martella G., Bonsi P., Zhang C., Pothos E. N. and Shen J. (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc. Natl Acad. Sci. USA 104, 1144111446.
  • Kittappa R., Chang W. W., Awatramani R. B. and McKay R. D. (2007) The FoxA2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol. 5, e325.
  • Klein C. and Schlossmacher M. G. (2006) The genetics of Parkinson disease: implications for neurological care. Nat. Clin. Pract. Neurol. 2, 136146.
  • Klein C., Djarmati A., Hedrich K. et al. (2005) PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset Parkinsonism. Eur. J. Hum. Genet. 13, 10861093.
  • Klein C., Lohmann-Hedrich K., Rogaeva E., Schlossmacher M. G. and Lang A. E. (2007) Deciphering the role of heterozygous mutations in genes associated with Parkinsonism. Lancet Neurol. 6, 652662.
  • Kotzbauer P. T., Truax T. C., Trojanowski J. Q. and Lee V. M. (2005) Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J. Neurosci. 25, 689698.
  • Lin M. T. and Beal M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787795.
  • Lo Bianco C., Schneider B. L., Bauer M., Sajadi A., Brice A., Iwatsubo T. and Aebischer P. (2004) Lentiviral vector delivery of Parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 101, 1751017515.
  • Martins L., Morrison A., Klupsch K. et al. (2004) Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell. Biol. 24, 98489862.
  • Meier S., Neupert W. and Herrmann J. M. (2005) Proline residues of transmembrane domains determine the sorting of inner membrane proteins in mitochondria. J. Cell Biol. 170, 881888.
  • Moore D. J. (2006) Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Trans. 34, 749753.
  • Muqit M. M., Abou-Sleiman P. M., Saurin A. T. et al. (2006) Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J. Neurochem. 98, 156169.
  • Niefind K., Guerra B., Pinna L. A., Issinger O. G. and Schomburg D. (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. EMBO J. 17, 24512462.
  • Nolen B., Yun C. Y., Wong C. F., McCammon J. A., Fu X. D. and Ghosh G. (2001) The structure of Sky1p reveals a novel mechanism for constitutive activity. Nat. Struct. Biol. 8, 176183.
  • Palacino J. J., Sagi D., Goldberg M. S., Krauss S., Motz C., Wacker M., Klose J. and Shen J. (2004) Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice. J. Biol. Chem. 279, 1861418622.
  • Pallanck L. and Greenamyre J. T. (2006) Neurodegenerative disease: pink, Parkin and the brain. Nature 441, 1058.
  • Park J., Lee S. B., Lee S. et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by Parkin. Nature 441, 11571161.
  • Peng J., Mao X. O., Stevenson F. F., Hsu M. and Andersen J. K. (2004) The herbicide Paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J. Biol. Chem. 279, 3262632632.
  • Petit A., Kawarai T., Paitel E. et al. (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem. 280, 3402534032.
  • Petrucelli L., O’Farrell C., Lockhart P. J. et al. (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 10071019.
  • Plun-Favreau H., Klupsch K., Moisoi N. et al. (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat. Cell Biol. 9, 12431252.
  • Polymeropoulos M. H., Lavedan C., Leroy E. et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 20452047.
  • Poole A. C., Thomas R. E., Andrews L. A., McBride H. M., Whitworth A. J. and Pallanck L. J. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105, 16381643.
  • Pridgeon J. W., Olzmann J. A., Chin L.-S. and Li L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, 14941503.
  • Putcha G. V., Deshmukh M. and Johnson E. M. Jr (2000) Inhibition of apoptotic signaling cascades causes loss of trophic factor dependence during neuronal maturation. J. Cell Biol. 149, 10111018.
  • Rafie-Kolpin M., Chefalo P. J., Hussain Z., Hahn J., Uma S., Matts R. L. and Chen J. J. (2000) Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J. Biol. Chem. 275, 51715178.
  • Ravid T. and Hochstrasser M. (2004) NF-kappaB signaling: flipping the switch with polyubiquitin chains. Curr. Biol. 14, R898R900.
  • Reinders J., Wagner K., Zahedi R. P., Stojanoski D., Eyrich B., Van Der Laan M., Rehling P., Sickmann A., Pfanner N. and Meisinger C. (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol. Cell. Proteomics 6, 18961906.
  • Ries V., Henchcliffe C., Kareva T., Rzhetskaya M., Bland R., During M. J., Kholodilov N. and Burke R. E. (2006) Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson’s disease. Proc. Natl Acad. Sci. USA 103, 1875718762.
  • Saporito M. S., Thomas B. A. and Scott R. W. (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem. 75, 12001208.
  • Scheidereit C. (2006) IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25, 66856705.
  • Shewchuk L., Hassell A., Wisely B., Rocque W., Holmes W., Veal J. and Kuyper L. F. (2000) Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. J. Med. Chem. 43, 133138.
  • Silvestri L., Caputo V., Bellacchio E., Atorino L., Dallapiccola B., Valente E. M. and Casari G. (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive Parkinsonism. Hum. Mol. Genet. 14, 34773492.
  • Sim C. H., Lio D. S., Mok S. S., Masters C. L., Hill A. F., Culvenor J. G. and Cheng H. C. (2006) C-terminal truncation and Parkinson’s disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum. Mol. Genet. 15, 32513262.
  • Strauss K. M., Martins L. M., Plun-Favreau H. et al. (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet. 14, 20992111.
  • Tan J. M. and Dawson T. M. (2006) Parkin blushed by PINK1. Neuron 50, 527529.
  • Tan E. K. and Skipper L. M. (2007) Pathogenic mutations in Parkinson disease. Hum. Mutat. 28, 641653.
  • Tan E. K., Yew K., Chua E. et al. (2005) Analysis of PINK1 in Asian patients with familial Parkinsonism. Clin. Genet. 68, 468470.
  • Tokumitsu H., Takahashi N., Eto K., Yano S., Soderling T. R. and Muramatsu M. (1999) Substrate recognition by Ca2+/calmodulin-dependent protein kinase kinase. Role of the Arg-Pro-rich insert domain. J. Biol. Chem. 274, 1580315810.
  • Unoki M. and Nakamura Y. (2001) Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20, 44574465.
  • Valente E. M., Bentivoglio A. R., Dixon P. H., Ferraris A., Ialongo T., Frontali M., Albanese A. and Wood N. W. (2001) Localization of a novel locus for autosomal recessive early-onset Parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet. 68, 895900.
  • Valente E. M., Salvi S., Ialongo T., Marongiu R., Elia A. E., Caputo V., Romito L., Albanese A., Dallapiccola B. and Bentivoglio A. R. (2004a) PINK1 mutations are associated with sporadic early-onset Parkinsonism. Ann. Neurol. 56, 336341.
  • Valente E. M., Abou-Sleiman P. M., Caputo V. et al. (2004b) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 11581160.
  • Vanhaesebroeck B., Leevers S. J., Ahmandi K., Timms J., Katso R., Driscoll P. C., Woscholski R., Park P. J. and Waterfield M. D. (2001) Synthesis and function of 3-phosphorylated inositol lipids. Ann. Rev. Biochem. 70, 535602.
  • Vercammen L., Van der Perren A., Vaudano E., Gijsbers R., Debyser Z., Van den Haute C. and Baekelandt V. (2006) Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson’s disease. Mol. Ther. 14, 716723.
  • Wallace D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359407.
  • Wang D., Qian L., Xiong H., Liu J., Neckameyer W. S., Oldham S., Xia K., Wang J., Bodmer R. and Zhang Z. (2006) Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc. Natl Acad. Sci. USA 103, 1352013525.
  • Xia X. G., Harding T., Weller M., Bieneman A., Uney J. B. and Schulz J. B. (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 98, 1043310438.
  • Yang Y., Nishimura I., Imai Y., Takahashi R. and Lu B. (2003) Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37, 911924.
  • Yang Y., Gehrke S., Haque M. E. et al. (2005) Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl Acad. Sci. USA 102, 1367013675.
  • Yang Y., Gehrke S., Imai Y., Huang Z., Ouyang Y., Wang J. W., Yang L., Beal M. F., Vogel H. and Lu B. (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 1079310798.
  • Yuan J. and Yankner B. A. (2000) Apoptosis in the nervous system. Nature 407, 802809.
  • Zhou H., Falkenburger B. H., Schulz J. B., Tieu K., Xu Z. and Xia X. G. (2007) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int. J. Biol. Sci. 3, 242250.