SEARCH

SEARCH BY CITATION

References

  • Alexianu M. E., Kozovska M. and Appel S. H. (2001) Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57, 12821289.
  • Basso M., Massignan T., Samengo G., Cheroni C., De Biasi S., Salmona M., Bendotti C. and Bonetto V. (2006) Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J. Biol. Chem. 281, 3332533335.
  • Batulan Z., Shinder G. A., Minotti S., He B. P., Doroudchi M. M., Nalbantoglu J., Strong M. J. and Durham H. D. (2003) High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23, 57895798.
  • Baumeister W., Walz J., Zuhl F. and Seemüller E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367380.
  • Bence N. F., Sampat R. M. and Kopito R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 15521555.
  • Bennett E. J., Bence N. F., Jayakumar R. and Kopito R. R. (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351365.
  • Boillee S., Yamanaka K., Lobsiger C. S., Copeland N. G., Jenkins N. A., Kassiotis G., Kollias G. and Cleveland D. W. (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 13891392.
  • Bruijn L. I., Becher M. W., Lee M. K. et al. (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327338.
  • Bruijn L. I., Miller T. M. and Cleveland D. W. (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723749.
  • Bulteau A. L., Petropoulos I. and Friguet B. (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp. Gerontol. 35, 767777.
  • Bulteau A. L., Lundberg K. C., Humphries K. M., Sadek H. A., Szweda P. A., Friguet B. and Szweda L. I. (2001) Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J. Biol. Chem. 276, 3005730063.
  • Camacho-Carvajal M. M., Wollscheid B., Aebersold R., Steimle V. and Schamel W. W. (2004) Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol. Cell Proteomics 3, 176182.
  • Carrard G., Dieu M., Raes M., Toussaint O. and Friguet B. (2003) Impact of ageing on proteasome structure and function in human lymphocytes. Int. J. Biochem. Cell Biol. 35, 728739.
  • Cheroni C., Peviani M., Cascio P., Debiasi S., Monti C. and Bendotti C. (2005) Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. Neurobiol. Dis. 18, 509522.
  • Chiu A. Y., Zhai P., Dal Canto M. C., Peters T. M., Kwon Y. W., Prattis S. M. and Gurney M. E. (1995) Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol. Cell. Neurosci. 6, 349362.
  • Chondrogianni N., Stratford F. L., Trougakos I. P., Friguet B., Rivett A. J. and Gonos E. S. (2003) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem. 278, 2802628037.
  • Chondrogianni N., Tzavelas C., Pemberton A. J., Nezis I. P., Rivett A. J. and Gonos E. S. (2005) Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J. Biol. Chem. 280, 1184011850.
  • Ciechanover A. (2005) N-terminal ubiquitination. Methods Mol. Biol. 301, 255270.
  • Ciechanover A. and Brundin P. (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427446.
  • Cleveland D. W. and Rothstein J. D. (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806819.
  • Dal Canto M. C. and Gurney M. E. (1995) Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676, 2540.
  • Dantuma N. P., Lindsten K., Glas R., Jellne M. and Masucci M. G. (2000) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 18, 538543.
  • DeMartino G. N. and Slaughter C. A. (1999) The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 274, 2212322126.
  • Di Giorgio F. P., Carrasco M. A., Siao M. C., Maniatis T. and Eggan K. (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608614.
  • Di Noto L., Whitson L. J., Cao X., Hart P. J. and Levine R. L. (2005) Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis. J. Biol. Chem. 280, 3990739913.
  • Durham H. D., Roy J., Dong L. and Figlewicz D. A. (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56, 523530.
  • Elsasser S., Schmidt M. and Finley D. (2005) Characterization of the proteasome using native gel electrophoresis. Methods Enzymol. 398, 353363.
  • Farout L., Mary J., Vinh J., Szweda L. I. and Friguet B. (2006) Inactivation of the proteasome by 4-hydroxy-2-nonenal is site specific and dependant on 20S proteasome subtypes. Arch. Biochem. Biophys. 453, 435442.
  • Furukawa Y. and O’Halloran T. V. (2005) Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J. Biol. Chem. 280, 1726617274.
  • Gaczynska M., Rock K. L., Spies T. and Goldberg A. L. (1994) Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc. Natl Acad. Sci. USA 91, 92139217.
  • Groettrup M., Khan S., Schwarz K. and Schmidtke G. (2001) Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie 83, 367372.
  • Grune T., Jung T., Merker K. and Davies K. J. (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 25192530.
  • Hall E. D., Oostveen J. A. and Gurney M. E. (1998) Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23, 249256.
  • Hart P. J. (2006) Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr. Opin. Chem. Biol. 10, 131138.
  • Hoffman E. K., Wilcox H. M., Scott R. W. and Siman R. (1996) Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J. Neurol. Sci. 139, 1520.
  • Johnston J. A., Dalton M. J., Gurney M. E. and Kopito R. R. (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 97, 1257112576.
  • Kabashi E. and Durham H. D. (2006) Failure of protein quality control in amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762, 10381050.
  • Kabashi E., Agar J. N., Taylor D. M., Minotti S. and Durham H. D. (2004) Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 89, 13251335.
  • Kato S., Horiuchi S., Liu J. et al. (2000) Advanced glycation endproduct-modified superoxide dismutase-1 (SOD1)-positive inclusions are common to familial amyotrophic lateral sclerosis patients with SOD1 gene mutations and transgenic mice expressing human SOD1 with a G85R mutation. Acta Neuropathol. (Berl.) 100, 490505.
  • Keller J. N., Huang F. F. and Markesbery W. R. (2000) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98, 149156.
  • Kriz J., Nguyen M. D. and Julien J. P. (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 10, 268278.
  • Li L., Zhang X. and Le W. (2008) Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 4, 290293.
  • Matsumoto G., Stojanovic A., Holmberg C. I., Kim S. and Morimoto R. I. (2005) Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase 1 aggregates. J. Cell Biol. 171, 7585.
  • Miyazaki K., Fujita T., Ozaki T. et al. (2004) NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J. Biol. Chem. 279, 1132711335.
  • Morimoto N., Nagai M., Ohta Y. et al. (2007) Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res. 1167, 112117.
  • Nagai M., Re D. B., Nagata T., Chalazonitis A., Jessell T. M., Wichterle H. and Przedborski S. (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615622.
  • Niwa J., Ishigaki S., Hishikawa N., Yamamoto M., Doyu M., Murata S., Tanaka K., Taniguchi N. and Sobue G. (2002) Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J. Biol. Chem. 277, 3679336798.
  • Pedersen W. A., Fu W., Keller J. N., Markesbery W. R., Appel S., Smith R. G., Kasarskis E. and Mattson M. P. (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819824.
  • Perluigi M., Fai Poon H., Hensley K., Pierce W. M., Klein J. B., Calabrese V., De Marco C. and Butterfield D. A. (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radic. Biol. Med. 38, 960968.
  • Poon H. F., Hensley K., Thongboonkerd V., Merchant M. L., Lynn B. C., Pierce W. M., Klein J. B., Calabrese V. and Butterfield D. A. (2005) Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice – a model of familial amyotrophic lateral sclerosis. Free Radic. Biol. Med. 39, 453462.
  • Puttaparthi K. and Elliott J. L. (2005) Non-neuronal induction of immunoproteasome subunits in an ALS model: possible mediation by cytokines. Exp. Neurol. 196, 441451.
  • Puttaparthi K., Wojcik C., Rajendran B., DeMartino G. N. and Elliott J. L. (2003) Aggregate formation in the spinal cord of mutant SOD1 transgenic mice is reversible and mediated by proteasomes. J. Neurochem. 87, 851860.
  • Rosen D. R., Siddique T., Patterson D. et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 5962.
  • Rubinsztein D. C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780786.
  • Shaw B. F. and Valentine J. S. (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem. Sci. 32, 7885.
  • Shinder G. A., Lacourse M. C., Minotti S. and Durham H. D. (2001) Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276, 1279112796.
  • Taylor D. M., Gibbs B. F., Kabashi E., Minotti S., Durham H. D. and Agar J. N. (2007) Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis. J. Biol. Chem. 282, 1632916335.
  • Urushitani M., Kurisu J., Tsukita K. and Takahashi R. (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J. Neurochem. 83, 10301042.
  • Urushitani M., Kurisu J., Tateno M., Hatakeyama S., Nakayama K., Kato S. and Takahashi R. (2004) CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J. Neurochem. 90, 231244.
  • Vargas M. R., Pehar M., Cassina P., Beckman J. S. and Barbeito L. (2006) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J. Neurochem. 97, 687696.
  • Wang J., Xu G. and Borchelt D. R. (2002) High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol. Dis. 9, 139148.
  • Wang J., Xu G., Slunt H. H., Gonzales V., Coonfield M., Fromholt D., Copeland N. G., Jenkins N. A. and Borchelt D. R. (2005) Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol. Dis. 20, 943952.
  • Watanabe M., Dykes-Hoberg M., Culotta V. C., Price D. L., Wong P. C. and Rothstein J. D. (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 8, 933941.
  • Zetterstrom P., Stewart H. G., Bergemalm D., Jonsson P. A., Graffmo K. S., Andersen P. M., Brannstrom T., Oliveberg M. and Marklund S. L. (2007) Soluble misfolded subfractions of mutant superoxide dismutase-1s are enriched in spinal cords throughout life in murine ALS models. Proc. Natl Acad. Sci. USA 104, 1415714162.