Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells


Address correspondence and reprint requests to Consuelo Guerri, Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler, 16. 46013-Valencia, Spain. E-mail:


We have recently reported that ethanol-induced inflammatory processes in the brain and glial cells are mediated via the activation of interleukin-1 beta receptor type I (IL-1RI)/toll-like receptor type 4 (TLR4) signalling. The mechanism(s) by which ethanol activates these receptors in astroglial cells remains unknown. Recently, plasma membrane microdomains, lipid rafts, have been identified as platforms for receptor signalling and, in astrocytes, rafts/caveolae constitute an important integrators of signal events and trafficking. Here we show that stimulation of astrocytes with IL-1β, lipopolysaccharide or ethanol (10 and 50 mM), triggers the translocation of IL-1RI and/or TLR4 into lipid rafts caveolae-enriched fractions, promoting the recruitment of signalling molecules (phospho-IL-1R-associated kinase and phospho-extracellular regulated-kinase) into these microdomains. With confocal microscopy, we further demonstrate that IL-1RI is internalized by caveolar endocytosis via enlarged caveosomes organelles upon IL-1β or ethanol treatment, which sorted their IL-1RI cargo into the endoplasmic reticulum–Golgi compartment and into the nucleus of astrocytes. In short, our findings demonstrate that rafts/caveolae are critical for IL-1RI and TLR4 signalling in astrocytes, and reveal a novel mechanism by which ethanol, by interacting with lipid rafts caveolae, promotes IL-1RI and TLR4 receptors recruitment, triggering their endocytosis via caveosomes and downstream signalling stimulation. These results suggest that TLRs receptors are important targets of ethanol-induced inflammatory damage in the brain.