SEARCH

SEARCH BY CITATION

References

  • Beal M. F., Kowall N. W., Ellison D. W., Mazurek M. F., Swartz K. J. and Martin J. B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168171.
  • Bennett B. L., Sasaki D. T., Murray B. W. et al. (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci. USA 98, 1368113686.
  • Boniece I. and Wagner J. (1993) Growth factors protect PC12 cells against ischemia by a mechanism that is independent of PKA, PKC, and protein synthesis. J. Neurosci. 13, 42204228.
  • Brown I. R., Rush S. and Ivy G. O. (1989) Induction of a heat shock gene at the site of tissue injury in the rat brain. Neuron 2, 15591564.
  • Chan V. J., Selzer P. M., McKerrow J. H. and Sakanari J. A. (1999) Expression and alteration of the S2 subsite of the Leishmania major cathepsin B-like cysteine protease. Biochem. J. 340 (Pt 1), 113117.
  • Chiarugi A., Meli E. and Moroni F. (2001) Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J. Neurochem. 77, 13101318.
  • Choe E. S. and McGinty J. F. (2000) N-Methyl-d-aspartate receptors and p38 mitogen-activated protein kinase are required for cAMP-dependent cyclase response element binding protein and Elk-1 phosphorylation in the striatum. Neuroscience 101, 607617.
  • Cohen J. and Wilkin G. P. (1995) Neural Cell Culture: A Practical Approach. IRL Press at Oxford University Press, Oxford.
  • Contestabile A. (2002) Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. The Cerebellum 1, 4155.
  • D’Mello S. R., Galli C., Ciotti T. and Calissano P. (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl Acad. Sci. USA 90, 1098910993.
  • Derynck R., Jarrett J. A., Chen E. Y. and Goeddel D. V. (1986) The murine transforming growth factor-beta precursor. J. Biol. Chem. 261, 43774379.
  • Dignam J. D., Lebovitz R. M. and Roeder R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 14751489.
  • Dobbie M., Crawley J., Waruiru C., Marsh K. and Surtees R. (2000) Cerebrospinal fluid studies in children with cerebral malaria: an excitotoxic mechanism? Am. J. Trop. Med. Hyg. 62, 284290.
  • Einstein O., Ben-Menachem-Tzidon O., Mizrachi-Kol R., Reinhartz E., Grigoriadis N. and Ben-Hur T. (2006) Survival of neural precursor cells in growth factor-poor environment: implications for transplantation in chronic disease. Glia 53, 449455.
  • Elin Lehrmann R. K., Thomas Christensen., Klaus V., Toyka X., Jens Zimmer., Diemer Nils. H., Hans-Peter Hartung. and Bente Finsen. (1998) Microglia and macrophages are major sources of locally produced transforming growth factor TGF-β1 after transient middle cerebral artery occlusion in rats. Glia 24, 437448.
  • Eljaschewitsch E., Witting A., Mawrin C. et al. (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49, 6779.
  • Erdal H., Berndtsson M., Castro J., Brunk U., Shoshan M. C. and Linder S. (2005) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc. Natl Acad. Sci. USA 102, 192197.
  • Espey M. G., Chernyshev O. N., Reinhard Jr J. F., Namboodiri M. A. and Colton C. A. (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8, 431434.
  • Fernandez-Sanchez M. T. and Novelli A. (1993) Basic fibroblast growth factor protects cerebellar neurons in primary culture from NMDA and non-NMDA receptor mediated neurotoxicity. FEBS Lett. 335, 124131.
  • Ferriero D. M., Soberano H. Q., Simon R. P. and Sharp F. R. (1990) Hypoxia-ischemia induces heat shock protein-like (HSP72) immunoreactivity in neonatal rat brain. Brain Res. Dev. Brain Res. 53, 145150.
  • Foghsgaard L., Wissing D., Mauch D., Lademann U., Bastholm L., Boes M., Elling F., Leist M. and Jaattela M. (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153, 9991010.
  • Freese A., Finklestein S. P. and DiFiglia M. (1992) Basic fibroblast growth factor protects striatal neurons in vitro from NMDA-receptor mediated excitotoxicity. Brain Res. 575, 351355.
  • Gonzalez-Scarano F. and Baltuch G. (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219240.
  • Guillemin G. J. and Brew B. J. (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep. 7, 199206.
  • Hamos J. E., Oblas B., Pulaski-Salo D., Welch W. J., Bole D. G. and Drachman D. A. (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurology 41, 345350.
  • Heyes M. P., Saito K., Crowley J. S. et al. (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115 (Pt 5), 12491273.
  • Higuchi M., Tomioka M., Takano J., Shirotani K., Iwata N., Masumoto H., Maki M., Itohara S. and Saido T. C. (2005) Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J. Biol. Chem. 280, 1522915237.
  • Im H. J., Muddasani P., Natarajan V., Schmid T. M., Block J. A., Davis F., Van Wijnen A. J. and Loeser R. F. (2007) Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase C delta pathways in human adult articular chondrocytes. J. Biol. Chem. 282, 1111011121.
  • Jara J. H., Singh B. B., Floden A. M. and Combs C. K. (2007) Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death. J. Neurochem. 100, 14071420.
  • Jiang Q., Gu Z., Zhang G. and Jing G. (2000) N-methyl-d-aspartate receptor activation results in regulation of extracellular signal-regulated kinases by protein kinases and phosphatases in glutamate-induced neuronal apototic-like death. Brain Res. 887, 285292.
  • Kerr S. J., Armati P. J. and Brew B. J. (1995) Neurocytotoxity of quinolinic acid in human brain cultures. J. Neurovirol. 1, 375380.
  • Kim J. P. and Choi D. W. (1987) Quinolinate neurotoxicity in cortical cell culture. Neuroscience 23, 423432.
  • Kumar U. (2004) Characterization of striatal cultures with the effect of QUIN and NMDA. Neurosci. Res. 49, 2938.
  • Kume T., Nishikawa H., Tomioka H., Katsuki H., Akaike A., Kaneko S., Maeda T., Kihara T. and Shimohama S. (2000) p75-mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures. Brain Res. 852, 279289.
  • Lee M. S., Kwon Y. T., Li M., Peng J., Friedlander R. M. and Tsai L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360364.
  • Lewis V., Green S., Marsh M., Vihko P., Helenius A. and Mellman I. (1985) Glycoproteins of the lysosomal membrane. J. Cell Biol. 100, 18391847.
  • Marciniszyn Jr J., Hartsuck J. A. and Tang J. (1977) Pepstatin inhibition mechanism. Adv. Exp. Med. Biol. 95, 199210.
  • Mark R. J., Keller J. N., Kruman I. and Mattson M. P. (1997) Basic FGF attenuates amyloid [beta]-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res. 756, 205214.
  • Mattson M., Murrain M., Guthrie P. and Kater S. (1989) Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. 9, 37283740.
  • Minghetti L., Ajmone-Cat M. A., De Berardinis M. A. and De Simone R. (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res. Brain Res. Rev. 48, 251256.
  • Mohammadi M., McMahon G., Sun L., Tang C., Hirth P., Yeh B. K., Hubbard S. R. and Schlessinger J. (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955960.
  • Morimoto R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 37883796.
  • Nakajima K., Kikuchi Y., Ikoma E., Honda S., Ishikawa M., Liu Y. and Kohsaka S. (1998) Neurotrophins regulate the function of cultured microglia. Glia 24, 272289.
  • Nylandsted J., Gyrd-Hansen M., Danielewicz A., Fehrenbacher N., Lademann U., Hoyer-Hansen M., Weber E., Multhoff G., Rohde M. and Jaattela M. (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200, 425435.
  • Rose K., Kriha D., Pallast S., Junker V., Klumpp S. and Krieglstein J. (2007) Basic fibroblast growth factor: Lysine 134 is essential for its neuroprotective activity. Neurochem. Int. 51, 25–31.
  • Santambrogio L., Belyanskaya S. L., Fischer F. R., Cipriani B., Brosnan C. F., Ricciardi-Castagnoli P., Stern L. J., Strominger J. L. and Riese R. (2001) Developmental plasticity of CNS microglia. Proc. Natl Acad. Sci. USA 98, 62956300.
  • Schwarcz R., Whetsell Jr W. O. and Mangano R. M. (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316318.
  • Shimojo M., Nakajima K., Takei N., Hamanoue M. and Kohsaka S. (1991) Production of basic fibroblast growth factor in cultured rat brain microglia. Neurosci. Lett. 123, 229231.
  • Smith D. G., Guillemin G. J., Pemberton L., Kerr S., Nath A., Smythe G. A. and Brew B. J. (2001) Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat. J. Neurovirol. 7, 5660.
  • Stanciu M. and DeFranco D. B. (2002) Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J. Biol. Chem. 277, 40104017.
  • Stanciu M., Wang Y., Kentor R. et al. (2000) Persistent activation of Erk contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 1220012206.
  • Stone T. W. (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol. Rev. 45, 309379.
  • Stone T. W., Mackay G. M., Forrest C. M., Clark C. J. and Darlington L. G. (2003) Tryptophan metabolites and brain disorders. Clin. Chem. Lab. Med. 41, 852859.
  • Stoppini L., Buchs P. A. and Muller D. (1991) A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173182.
  • Subramaniam S., Strelau J. and Unsicker K. (2003) Growth differentiation factor-15 prevents low potassium-induced cell death of cerebellar granule neurons by differential regulation of Akt and ERK pathways. J. Biol. Chem. 278, 89048912.
  • Subramaniam S., Zirrgiebel U., Von Bohlen Und Halbach O., Strelau J., Laliberte C., Kaplan D. R. and Unsicker K. (2004) ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J. Cell Biol. 165, 357369.
  • Syntichaki P. and Tavernarakis N. (2003) The biochemistry of neuronal necrosis: rogue biology? Nat. Rev. Neurosci. 4, 672684.
  • Takano J., Tomioka M., Tsubuki S., Higuchi M., Iwata N., Itohara S., Maki M. and Saido T. C. (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J. Biol. Chem. 280, 1617516184.
  • Tavares R. G., Schmidt A. P., Abud J., Tasca C. I. and Souza D. O. (2005) In vivo quinolinic acid increases synaptosomal glutamate release in rats: reversal by guanosine. Neurochem. Res. 30, 439444.
  • Toku K., Tanaka J., Yano H., Desaki J., Zhang B., Yang L., Ishihara K., Sakanaka M. and Maeda N. (1998) Microglial cells prevent nitric oxide-induced neuronal apoptosis in vitro. J. Neurosci. Res. 53, 415425.
  • Tokuda H., Hirade K., Wang X., Oiso Y. and Kozawa O. (2003) Involvement of SAPK/JNK in basic fibroblast growth factor-induced vascular endothelial growth factor release in osteoblasts. J. Endocrinol. 177, 101107.
  • Tsujinaka T., Kajiwara Y., Kambayashi J., Sakon M., Higuchi N., Tanaka T. and Mori T. (1988) Synthesis of a new cell penetrating calpain inhibitor (calpeptin). Biochem. Biophys. Res. Commun. 153, 12011208.
  • Umezawa H. (1976) Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 45, 678695.
  • Uney J. B., Leigh P. N., Marsden C. D., Lees A. and Anderton B. H. (1988) Stereotaxic injection of kainic acid into the striatum of rats induces synthesis of mRNA for heat shock protein 70. FEBS Lett. 235, 215218.
  • Vass K., Berger M. L., Nowak Jr T. S., Welch W. J. and Lassmann H. (1989) Induction of stress protein HSP70 in nerve cells after status epilepticus in the rat. Neurosci. Lett. 100, 259264.
  • Vercoutter-Edouart A.-S., Czeszak X., Crepin M., Lemoine J., Boilly B., Le Bourhis X., Peyrat J.-P. and Hondermarck H. (2001) Proteomic detection of changes in protein synthesis induced by fibroblast growth factor-2 in MCF-7 human breast cancer cells. Exp. Cell Res. 262, 5968.
  • Wang K., Wang J.-J., Wang Y., He Q.-H., Wang X. and Wang X.-M. (2004) Infusion of epidermal growth factor and basic fibroblast growth factor into the striatum of parkinsonian rats leads to in vitro proliferation and differentiation of adult neural progenitor cells. Neurosci. Lett. 364, 154158.
  • Xu X. H., Zhang H. L., Han R., Gu Z. L. and Qin Z. H. (2006) Enhancement of neuroprotection and heat shock protein induction by combined prostaglandin A1 and lithium in rodent models of focal ischemia. Brain Res. 1102, 154162.
  • Yamashima T. (2004) Ca2+-dependent proteases in ischemic neuronal death: a conserved ‘calpain-cathepsin cascade’ from nematodes to primates. Cell Calcium 36, 285293.
  • Yoon S. and Seger R. (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 2144.
  • Zhao L. and Eghbali-Webb M. (2001) Release of pro- and anti-angiogenic factors by human cardiac fibroblasts: effects on DNA synthesis and protection under hypoxia in human endothelial cells. Biochim. Biophys. Acta 1538, 273282.