SEARCH

SEARCH BY CITATION

References

  • Aghajanian G. K. and Wang R. Y. (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res. 122, 229242.
  • Ago Y., Nakamura S., Uda M., Kajii Y., Abe M., Baba A. and Matsuda T. (2006) Attenuation by the 5-HT1A receptor agonist osemozotan of the behavioral effects of single and repeated methamphetamine in mice. Neuropharmacology 51, 914922.
  • Amargós-Bosch M., Adell A. and Artigas F. (2007) Antipsychotic drugs reverse the AMPA receptor-stimulated release of 5-HT in the medial prefrontal cortex. J. Neurochem. 102, 550561.
  • Bakhit C. and Gibb J. W. (1981) Methamphetamine-induced depression of tryptophan hydroxylase: recovery following acute treatment. Eur. J. Pharmacol. 76, 229233.
  • Baumgarten H. G. and Lachenmayer L. (2004) Serotonin neurotoxins – past and present. Neurotox. Res. 6, 589614.
  • Blandina P., Goldfarb J., Craddock-Royal B. and Green J. P. (1989) Release of endogenous dopamine by stimulation of 5-hydroxytryptamine 3 receptors in rat striatum. J. Pharmacol. Exp. Ther. 251, 803809.
  • Bortolozzi A., Díaz-Mataix L., Scorza M. C., Celada P. and Artigas F. (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J. Neurochem. 95, 15971607.
  • Branchereau P., Chapron J. and Meyrand P. (2002) Descending 5-hydroxytryptamine raphe inputs repress the expression of serotonergic neurons and slow the maturation of inhibitory systems in mouse embryonic spinal cord. J. Neurosci. 22, 25982606.
  • Breese G. R., Knapp D. J. and Moy S. S. (2002) Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci. Biobehav. Rev. 26, 441455.
  • Breier J. M., Bankson M. G. and Yamamoto B. K. (2006) L-Tyrosine contributes to (+)-3,4-methylenedioxymethamphetamine-induced serotonin depletions. J. Neurosci. 26, 290299.
  • Callaway C. W., Wing L. L. and Geyer M. A. (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J. Pharmacol. Exp. Ther. 254, 456464.
  • Celada P., Puig M. V., Casanovas J. M., Guillazo G. and Artigas F. (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci. 21, 99179929.
  • Cole J. C. and Sumnall H. R. (2003) The pre-clinical behavioural pharmacology of 3,4-methylenedioxymethamphetamine (MDMA). Neurosci. Biobehav. Rev. 27, 199217.
  • Cransac H., Cottet-Emard J. M., Pequignot J. M. and Peyrin L. (1996) Monoamines (norepinephrine, dopamine, serotonin) in the rat medial vestibular nucleus: endogenous levels and turnover. J. Neural. Transm. 103, 391401.
  • Dafters R. I. (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol. Behav. 58, 877882.
  • Di Matteo V., Di Giovanni G., Di Mascio M. and Esposito E. (1999) SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38, 11951205.
  • Díaz-Mataix L., Scorza M. C., Bortolozzi A., Toth M., Celada P. and Artigas F. (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J. Neurosci. 25, 1083110843.
  • Gartside S. E., McQuade R. and Sharp T. (1996) Effects of repeated administration of 3,4-methylenedioxymethamphetamine on 5-hydroxytryptamine neuronal activity and release in the rat brain in vivo. J. Pharmacol. Exp. Ther. 279, 277283.
  • Gartside S. E., Cole A. J., Williams A. P., McQuade R. and Judge S. J. (2007) AMPA and NMDA receptor regulation of firing activity in 5-HT neurons of the dorsal and median raphe nuclei. Eur. J. Neurosci. 25, 30013008.
  • Groenewegen H. J. and Uylings H. B. (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog. Brain Res. 126, 328.
  • Grönig M., Atalla A. and Kuschinsky K. (2004) Effects of dizocilpine [(+)-MK-801] on the expression of associative and non-associative sensitization to D-amphetamine. Naunyn Schmiedebergs Arch. Pharmacol. 369, 228231.
  • Guthrie K. M., Tran A., Baratta J., Yu J. and Robertson R. T. (2005) Patterns of afferent projections to the dentate gyrus studied in organotypic co-cultures. Dev. Brain Res. 157, 162171.
  • Han D. D. and Gu H. H. (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 6, 6.
  • Herin D. V., Liu S., Ullrich T., Rice K. C. and Cunningham K. A. (2005) Role of the serotonin 5-HT2A receptor in the hyperlocomotive and hyperthermic effects of (+)-3,4-methylenedioxymethamphetamine. Psychopharmacology 178, 505513.
  • Hervé D., Pickel V. M., Joh T. H. and Beaudet A. (1987) Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res. 435, 7183.
  • Hilber B., Scholze P., Dorostkar M. M., Sandtner W., Holy M., Boehm S., Singer E. A. and Sitte H. H. (2005) Serotonin-transporter mediated efflux: a pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology 49, 811819.
  • Howell L. L. and Kimmel H. L. (2008) Monoamine transporters and psychostimulant addiction. Biochem. Pharmacol. 75, 196217.
  • Hrometz S. L., Brown A. W., Nichols D. E. and Sprague J. E. (2004) 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy)-mediated production of hydrogen peroxide in an in vitro model: the role of dopamine, the serotonin-reuptake transporter, and monoamine oxidase-B. Neurosci. Lett. 367, 5659.
  • Imai H., Steindler D. A. and Kitai S. T. (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J. Comp. Neurol. 243, 363380.
  • Itzha Y., Anderson K. L. and Ali S. F. (2004) Differential response of nNOS knockout mice to MDMA (“ecstasy”)- and methamphetamine-induced psychomotor sensitization and neurotoxicity. Ann. N. Y. Acad. Sci. 1025, 119128.
  • Johnson R. A., Eshleman A. J., Meyers T., Neve K. A. and Janowsky A. (1998) [3H]Substrate- and cell-specific effects of uptake inhibitors on human dopamine and serotonin transporter-mediated efflux. Synapse 30, 97106.
  • Jonakait G. M., Schotland S. and Ni L. (1988) Development of serotonin, substance P and thyrotrophin-releasing hormone in mouse medullary raphe grown in organotypic tissue culture: developmental regulation by serotonin. Brain Res. 473, 336343.
  • Karler R., Calder L. D., Chaudhry I. A. and Turkanis S. A. (1989) Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci. 45, 599606.
  • Katayama T., Minami M., Nakamura M., Ito M., Katsuki H., Akaike A. and Satoh M. (2002) Excitotoxic injury induces production of monocyte chemoattractant protein-1 in rat cortico-striatal slice cultures. Neurosci. Lett. 328, 277280.
  • Kita T., Wagner G. C. and Nakashima T. (2003) Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J. Pharmacol. Sci. 92, 178195.
  • Kuribara H., Asami T., Ida I., Iijima Y. and Tadokoro S. (1992) Effects of repeated MK-801 on ambulation in mice and in sensitization following methamphetamine. Psychopharmacology 108, 271275.
  • Lanteri C., Salomon L., Torrens Y., Glowinski J. and Tassin J. P. (2008) Drugs of abuse specifically sensitize noradrenergic and serotonergic neurons via a non-dopaminergic mechanism. Neuropsychopharmacology 33, 17241734.
  • Lyles J. and Cadet J. L. (2003) Methylenedioxymethamphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Res. Rev. 42, 155168.
  • Maeda T., Fukazawa Y., Shimizu N., Ozaki M., Yamamoto H. and Kishioka S. (2004) Electrophysiological characteristic of corticoaccumbens synapses in rat mesolimbic system reconstructed using organotypic slice cultures. Brain Res. 1015, 3440.
  • Moser P. C., Moran P. M., Frank R. A. and Kehne J. H. (1996) Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist. Behav. Brain Res. 73, 163167.
  • Müller C. P., Carey R. J., Huston J. P. and De Souza Silva M. A. (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog. Neurobiol. 81, 133178.
  • Nestler E. J. (2005) Is there a common molecular pathway for addiction? Nat. Neurosci. 8, 14451449.
  • Ohmori T., Abekawa T., Muraki A. and Koyama T. (1994) Competitive and noncompetitive NMDA antagonists block sensitization to methamphetamine. Pharmacol. Biochem. Behav. 48, 587591.
  • Pallotta M., Segieth J. and Whitton P. S. (1998) N-methyl-D-aspartate receptors regulate 5-HT release in the raphe nuclei and frontal cortex of freely moving rats: differential role of 5-HT1A autoreceptors. Brain Res. 783, 173178.
  • Papp E. C., Heimrich B. and Freund T. F. (1995) Development of the raphe-hippocampal projection in vitro. Neuroscience 69, 99105.
  • Parsons L. H. and Justice Jr J. B. (1993a) Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res. 606, 195199.
  • Parsons L. H. and Justice Jr J. B. (1993b) Serotonin and dopamine sensitization in the nucleus accumbens, ventral tegmental area, and dorsal raphe nucleus following repeated cocaine administration. J. Neurochem. 61, 16111619.
  • Paxinos G., Törk I., Teccot L. H. and Valentino K. L. (1991) Atlas of the Developing Rat Brain. Academic Press, San Diego.
  • Phelix C. F. and Broderick P. A. (1995) Light microscopic immunocytochemical evidence of converging serotonin and dopamine terminals in ventrolateral nucleus accumbens. Brain Res. Bull. 37, 3740.
  • Pifl C., Nagy G., Berényi S., Kattinger A., Reither H. and Antus S. (2005) Pharmacological characterization of ecstasy synthesis byproducts with recombinant human monoamine transporters. J. Pharmacol. Exp. Ther. 314, 346354.
  • Prisco S., Pagannone S. and Esposito E. (1994) Serotonin–dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J. Pharmacol. Exp. Ther. 271, 8390.
  • Przegaliński E. and Filip M. (1997) Stimulation of serotonin (5-HT)1A receptors attenuates the locomotor, but not the discriminative, effects of amphetamine and cocaine in rats. Behav. Pharmacol. 8, 699706.
  • Przegaliński E., Siwanowicz J., Baran L. and Filip M. (2000) Activation of serotonin (5-HT)1A receptors inhibits amphetamine sensitization in mice. Life Sci. 66, 10111019.
  • Przegaliński E., Siwanowicz J., Nowak E., Papla I. and Filip M. (2001) Role of 5-HT1B receptors in the sensitization to amphetamine in mice. Eur. J. Pharmacol. 422, 9199.
  • Robinson T. E. and Berridge K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247291.
  • Roche M., Commons K. G., Peoples A. and Valentino R. J. (2003) Circuitry underlying regulation of the serotonergic system by swim stress. J. Neurosci. 23, 970977.
  • Ross J. D., Herin D. V., Frankel P. S., Thomas M. L. and Cunningham K. A. (2006) Chronic treatment with a serotonin 2 receptor (5-HT2R) agonist modulates the behavioral and cellular response to (+)-3,4-methylenedioxymethamphetamine [(+)-MDMA]. Drug Alcohol Depend. 81, 117127.
  • Salomon L., Lanteri C., Glowinski J. and Tassin J. P. (2006) Behavioral sensitization to amphetamine results from an uncoupling between noradrenergic and serotonergic neurons. Proc. Natl Acad. Sci. USA 103, 74767481.
  • Schmidt C. J. and Taylor V. L. (1987) Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine. Biochem. Pharmacol. 36, 40954102.
  • Schmidt C. J. and Taylor V. L. (1988) Direct central effects of acute methylenedioxymethamphetamine on serotonergic neurons. Eur. J. Pharmacol. 156, 121131.
  • Selken J. and Nichols D. E. (2007) α1-Adrenergic receptors mediate the locomotor response to systemic administration of (±)-3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav. 86, 622630.
  • Spanos L. J. and Yamamoto B. K. (1989) Acute and subchronic effects of methylenedioxymethamphetamine [±-MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol. Biochem. Behav. 32, 835840.
  • Sprague J. E., Everman S. L. and Nichols D. E. (1998) An integrated hypothesis for the serotonergic axonal loss induced by 3,4-methylenedioxymethamphetamine. Neurotoxicology 19, 427441.
  • Sprague J. E., Moze P., Caden D., Rusyniak D. E., Holmes C., Goldstein D. S. and Mills E. M. (2005) Carvedilol reverses hyperthermia and attenuates rhabdomyolysis induced by 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) in an animal model. Crit. Care Med. 33, 13111316.
  • Vanderschuren L. J. and Kalivas P. W. (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151, 99120.
  • Wolf M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679720.
  • Wolf M. E., White F. J. and Hu X. T. (1994) MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci. 14, 17351745.