SEARCH

SEARCH BY CITATION

References

  • Abramov A. Y., Scorziello A. and Duchen M. R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27, 11291138.
  • Asahi M., Asahi K., Wang X. and Lo E. H. (2000) Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 20, 452457.
  • Babior B. M. (2004) NADPH oxidase. Curr. Opin. Immunol. 16, 4247.
  • Chan P. H. (1996) Role of oxidants in ischemic brain damage. Stroke 27, 11241129.
  • Chan P. H. (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 214.
  • Deem T. L. and Cook-Mills J. M. (2004) Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104, 23852393.
  • Flynn E. P. and Auer R. N. (2002) Eubaric hyperoxemia and experimental cerebral infarction. Ann. Neurol. 52, 566572.
  • Gasche Y., Copin J. C., Sugawara T., Fujimura M. and Chan P. H. (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 21, 13931400.
  • Henninger N., Bouley J., Nelligan J. M., Sicard K. M. and Fisher M. (2007) Normobaric hyperoxia delays perfusion/diffusion mismatch evolution, reduces infarct volume, and differentially affects neuronal cell death pathways after suture middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 27, 16321642.
  • Hong H., Zeng J. S., Kreulen D. L., Kaufman D. I. and Chen A. F. (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am. J. Physiol. Heart Circ. Physiol. 291, H2210H2215.
  • Infanger D. W., Sharma R. V. and Davisson R. L. (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid. Redox Signal. 8, 15831596.
  • Inoue N., Takeshita S., Gao D., Ishida T., Kawashima S., Akita H., Tawa R., Sakurai H. and Yokoyama M. (2001) Lysophosphatidylcholine increases the secretion of matrix metalloproteinase 2 through the activation of NADH/NADPH oxidase in cultured aortic endothelial cells. Atherosclerosis 155, 4552.
  • Jacobson G. M., Dourron H. M., Liu J., Carretero O. A., Reddy D. J., Andrzejewski T. and Pagano P. J. (2003) Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ. Res. 92, 637643.
  • Kago T., Takagi N., Date I., Takenaga Y., Takagi K. and Takeo S. (2006) Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem. Biophys. Res. Commun. 339, 11971203.
  • Kahles T., Luedike P., Endres M., Galla H. J., Steinmetz H., Busse R., Neumann-Haefelin T. and Brandes R. P. (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38, 30003006.
  • Kamada H., Yu F., Nito C. and Chan P. K. (2007) Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood–brain barrier dysfunction. Stroke 38, 10441049.
  • Kelly M. A., Shuaib A. and Todd K. G. (2006) Matrix metalloproteinase activation and blood–brain barrier breakdown following thrombolysis. Exp. Neurol. 200, 3849.
  • Kelly P. J., Morrow J. D., Ning M. et al. (2008) Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke 39, 100104.
  • Kim H. Y., Singhal A. B. and Lo E. H. (2005) Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann. Neurol. 57, 571575.
  • Kuroiwa T., Ting P., Martinez H. and Klatzo I. (1985) The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. (Berl.) 68, 122129.
  • Lai C. F., Seshadri V., Huang K. et al. (2006) An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ. Res. 98, 14791489.
  • Liu J. K. and Rosenberg G. A. (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic. Biol. Med. 39, 7180.
  • Liu S., Shi H., Liu W., Furuichi T., Timmins G. S. and Liu K. J. (2004) Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 24, 343349.
  • Liu S., Liu W., Ding W., Miyake M., Rosenberg G. A. and Liu K. J. (2006) Electron paramagnetic resonance-guided normobaric hyperoxia treatment protects the brain by maintaining penumbral oxygenation in a rat model of transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 26, 12741284.
  • Manley G. T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A. W., Chan P. and Verkman A. S. (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6, 159163.
  • Mickel H. S., Vaishnav Y. N., Kempski O., Von Lubitz D., Weiss J. F. and Feuerstein G. (1987) Breathing 100% oxygen after global brain ischemia in Mongolian Gerbils results in increased lipid peroxidation and increased mortality. Stroke 18, 426430.
  • Miller A. A., Drummond G. R., Schmidt H. H. and Sobey C. G. (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ. Res. 97, 10551062.
  • Ostrowski R. P., Tang J. and Zhang J. H. (2006) Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke 37, 13141318.
  • Pagano P. J. and Haurani M. J. (2006) Vascular cell locomotion: osteopontin, NADPH oxidase, and matrix metalloproteinase-9. Circ. Res. 98, 14531455.
  • Park L., Anrather J., Zhou P., Frys K., Pitstick R., Younkin S., Carlson G. A. and Iadecola C. (2005) NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J. Neurosci. 25, 17691777.
  • Rosenberg G. A., Estrada E. Y. and Dencoff J. E. (1998) Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 29, 21892195.
  • Rude M. K., Duhaney T. A., Kuster G. M., Judge S., Heo J., Colucci W. S., Siwik D. A. and Sam F. (2005) Aldosterone stimulates matrix metalloproteinases and reactive oxygen species in adult rat ventricular cardiomyocytes. Hypertension 46, 555561.
  • Shin H. K., Dunn A. K., Jones P. B., Boas D. A., Lo E. H., Moskowitz M. A. and Ayata C. (2007) Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130, 16311642.
  • Shukla A., Shukla R., Dikshit M. and Srimal R. C. (1993) Alterations in free radical scavenging mechanisms following blood–brain barrier disruption. Free Radic. Biol. Med. 15, 97100.
  • Singhal A. B. (2007) A review of oxygen therapy in ischemic stroke. Neurol. Res. 29, 173183.
  • Singhal A. B., Dijkhuizen R. M., Rosen B. R. and Lo E. H. (2002a) Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology 58, 945952.
  • Singhal A. B., Wang X., Sumii T., Mori T. and Lo E. H. (2002b) Effects of normobaric hyperoxia in a rat model of focal cerebral ischemia-reperfusion. J. Cereb. Blood Flow Metab. 22, 861868.
  • Sood R., Taheri S., Estrada E. Y. and Rosenberg G. A. (2007) Quantitative evaluation of the effect of propylene glycol on BBB permeability. J. Magn. Reson. Imaging 25, 3947.
  • Sood R. R., Taheri S., Candelario-Jalil E., Estrada E. Y. and Rosenberg G. A. (2008) Early beneficial effect of matrix metalloproteinase inhibition on blood–brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J. Cereb. Blood Flow Metab. 28, 431438.
  • Stamler J. S. (1996) Alzheimer’s disease. A radical vascular connection. Nature 380, 108111.
  • Walder C. E., Green S. P., Darbonne W. C., Mathias J., Rae J., Dinauer M. C., Curnutte J. T. and Thomas G. R. (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28, 22522258.
  • Wang Q., Tompkins K. D., Simonyi A., Korthuis R. J., Sun A. Y. and Sun G. Y. (2006) Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 1090, 182189.
  • Yang G. Y. and Betz A. L. (1994) Reperfusion-induced injury to the blood–brain barrier after middle cerebral artery occlusion in rats. Stroke 25, 16581664.
  • Yang Y., Estrada E. Y., Thompson J. F., Liu W. and Rosenberg G. A. (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow Metab. 27, 697709.