SEARCH

SEARCH BY CITATION

References

  • Ahn K. (1998) Endothelin-converting enzyme 2, in Handbook of Proteolytic Enzymes (BarrettA. J., RawlingsN. D. and WoessnerJ. F., eds), pp. 10901091. Academic Press, San Diego, CA.
  • Baggerman G., Verleyen P., Clynen E., Huybrechts J., De Loof A. and Schoofs L. (2004) Peptidomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 803, 316.
  • Beisswanger R., Corbeil D., Vannier C., Thiele C., Dohrmann U., Kellner R., Ashman K., Niehrs C. and Huttner W. B. (1998) Existence of distinct tyrosylprotein sulfotransferase genes: molecular characterization of tyrosylprotein sulfotransferase-2. Proc. Natl Acad. Sci. USA 95, 1113411139.
  • Bennett H. P. J. (1991) Glycosylation, phosphorylation, and sulfation of peptide hormones and their precursors, in Peptide Biosynthesis and Processing (FrickerL. D., ed.), pp. 111140. CRC Press, Boca Raton, FL.
  • Cain B. M., Wang W. and Beinfeld M. C. (1997) Cholecystokinin (CCK) levels are greatly reduced in the brains but not the duodenums of Cpefat/Cpefat mice: A regional difference in the involvement of carboxypeptidase E (Cpe) in pro-CCK processing. Endocrinology 138, 40344037.
  • Cawley N. X., Zhou J., Hill J. M., Abebe D., Romboz S., Yanik T., Rodriguiz R. M., Wetsel W. C. and Loh Y. P. (2004) The carboxypeptidase E knockout mouse exhibits endocrinological and behavioral deficits. Endocrinology 145, 58075819.
  • Che F.-Y. and Fricker L. D. (2002) Quantitation of neuropeptides in Cpefat/Cpefat mice using differential isotopic tags and mass spectrometry. Anal. Chem. 74, 31903198.
  • Che F.-Y. and Fricker L. D. (2005) Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J. Mass Spectrom. 40, 238249.
  • Che F.-Y., Yan L., Li H., Mzhavia N., Devi L. and Fricker L. D. (2001) Identification of peptides from brain and pituitary of Cpefat/Cpefat mice. Proc. Natl Acad. Sci. USA 98, 99719976.
  • Che F.-Y., Biswas R. and Fricker L. D. (2005a) Relative quantitation of peptides in wild type and Cpefat/fat mouse pituitary using stable isotopic tags and mass spectrometry. J. Mass Spectrom. 40, 227237.
  • Che F.-Y., Lim J., Biswas R., Pan H. and Fricker L. D. (2005b) Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol. Cell Proteomics 4, 13911405.
  • Che F.-Y., Yuan Q., Kalinina E. and Fricker L. D. (2005c) Peptidomics of Cpefat/fat mouse hypothalamus: effect of food deprivation and exercise on peptide levels. J. Biol. Chem. 280, 44514461.
  • Che F. Y., Zhang X., Berezniuk I., Callaway M., Lim J. and Fricker L. D. (2007) Optimization of neuropeptide extraction from the mouse hypothalamus. J. Proteome Res. 6, 46674676.
  • Chen H., Jawahar S., Qian Y. et al. (2001) A missense polymorphism in the human carboxypeptidase E gene alters its enzymatic activity: possible implications in type 2 diabetes mellitus. Hum. Mut. 18, 120131.
  • Day R., Lazure C., Basak A., Boudreault A., Limperis P., Dong W. and Lindberg I. (1998) Prodynorphin processing by proprotein convertase 2: cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J. Biol. Chem. 273, 829836.
  • Devi L. (1991) Peptide processing at monobasic sites, in Peptide Biosynthesis and Processing (FrickerL. D., ed.), pp. 175198. CRC Press, Boca Raton, FL.
  • Dowell J. A., Heyden W. V. and Li L. (2006) Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS: enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J. Proteome Res. 5, 33683375.
  • Eipper B. A. and Mains R. E. (1988) Peptide alpha-amidation. Ann. Rev. Physiol. 50, 333344.
  • Eipper B. A., Mains R. E. and Herbert E. (1986) Peptides in the nervous system. Trends Neurosci. 9, 463468.
  • Emoto N. and Yanagisawa M. (1995) Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J. Biol. Chem. 270, 1526215268.
  • Eng F. J., Novikova E. G., Kuroki K., Ganem D. and Fricker L. D. (1998) gp180, a protein that binds duck hepatitis B virus particles, has metallocarboxypeptidase D-like enzymatic activity. J. Biol. Chem. 273, 83828388.
  • Eng F. J., Varlamov O. and Fricker L. D. (1999) Sequences within the cytoplasmic domain of gp180/carboxypeptidase D mediate localization to the trans-Golgi network. Mol. Biol. Cell 10, 3546.
  • Falth M., Skold K., Svensson M., Nilsson A., Fenyo D. and Andren P. E. (2007) Neuropeptidomics strategies for specific and sensitive identification of endogenous peptides. Mol. Cell Proteomics 6, 11881197.
  • Fontenele-Neto J. D., Kalinina E., Feng Y. and Fricker L. D. (2005) Identification and distribution of mouse carboxypeptidase A-6. Mol. Brain Res. 137, 132142.
  • Fricker L. D. (1988) Carboxypeptidase E. Ann. Rev. Physiol. 50, 309321.
  • Fricker L. D. (2007) Neuropeptidomics to study peptide processing in animal models of obesity. Endocrinology 148, 41854190.
  • Fricker L. D. and Leiter E. H. (1999) Peptides, enzymes, and obesity: new insights from a “dead” enzyme. Trends Biochem. Sci. 24, 390393.
  • Fricker L. D. and Snyder S. H. (1982) Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc. Natl Acad. Sci. USA 79, 38863890.
  • Fricker L. D., Berman Y. L., Leiter E. H. and Devi L. A. (1996) Carboxypeptidase E activity is deficient in mice with the fat mutation: effect on peptide processing. J. Biol. Chem. 271, 3061930624.
  • Fricker L. D., McKinzie A. A., Sun J. et al. (2000) Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J. Neurosci. 20, 639648.
  • Fricker L. D., Lim J., Pan H. and Che F.-Y. (2006) Peptidomics: Identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom. Rev. 25, 327344.
  • Furuta M., Yano H., Zhou A., Rouille Y., Holst J. J., Carroll R., Ravazzola M., Orci L., Furata H. and Steiner D. F. (1997) Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc. Natl Acad. Sci. USA 94, 66466651.
  • Furuta M., Carroll R., Martin S., Swift H. H., Ravazzola M., Orci L. and Steiner D. F. (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273, 34313437.
  • Furuta M., Zhou A., Webb G., Carroll R., Ravazzola M., Orci L. and Steiner D. F. (2001) Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J. Biol. Chem. 276, 2719727202.
  • Greene D., Das B. and Fricker L. D. (1992) Regulation of carboxypeptidase E: effect of pH, temperature, and Co++ on kinetic parameters of substrate hydrolysis. Biochem. J. 285, 613618.
  • Hillebrand J. J., De Wied D. and Adan R. A. (2002) Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides 23, 22832306.
  • Hook V., Funkelstein L., Lu D., Bark S., Wegrzyn J. and Hwang S. R. (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu. Rev. Pharmacol. Toxicol. 48, 393423.
  • Hummon A. B., Amare A. and Sweedler J. V. (2006) Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom. Rev. 25, 7798.
  • Hwang S. R., Garza C., Mosier C., Toneff T., Wunderlich E., Goldsmith P. and Hook V. (2007a) Cathepsin L expression is directed to secretory vesicles for enkephalin neuropeptide biosynthesis and secretion. J. Biol. Chem. 282, 95569563.
  • Hwang S. R., O’Neill A., Bark S., Foulon T. and Hook V. (2007b) Secretory vesicle aminopeptidase B related to neuropeptide processing: molecular identification and subcellular localization to enkephalin- and NPY-containing chromaffin granules. J. Neurochem. 100, 13401350.
  • Lim J., Berezniuk I., Che F.-Y., Parikh R., Biswas R., Pan H. and Fricker L. D. (2006) Altered neuropeptide processing in prefrontal cortex of Cpefat/fat mice: implications for neuropeptide discovery. J. Neurochem. 96, 11691181.
  • Lindberg I. and Hutton J. C. (1991) Peptide processing proteinases with selectivity for paired basic residues, in Peptide Biosynthesis and Processing (FrickerL. D., ed.), pp. 141174. CRC Press, Boca Raton, FL.
  • Maddatu T. and Naggert J. K. (1997) Allele-specific PCR assays for the tub and Cpefat mutations. Mamm. Genome 8, 857858.
  • Mains R. E., Dickerson I. M., May V., Stoffers D. A., Perkins S. N., Ouafik L. H., Husten E. J. and Eipper B. A. (1990) Cellular and molecular aspects of peptide hormone biosynthesis. Front Endocrinol. 11, 5289.
  • Martens G. J., Braks J. A., Eib D. W., Zhou Y. and Lindberg I. (1994) The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc. Natl Acad. Sci. USA 91, 57845787.
  • Mzhavia N., Berman Y., Che F.-Y., Fricker L. D. and Devi L. A. (2001) ProSAAS processing in mouse brain and pituitary. J. Biol. Chem. 276, 62076213.
  • Mzhavia N., Qian Y., Feng Y., Che F.-Y., Devi L. A. and Fricker L. D. (2002) Processing of proSAAS in neuroendocrine cell lines. Biochem. J. 361, 6776.
  • Mzhavia N., Pan H., Che F.-Y., Fricker L. D. and Devi L. A. (2003) Characterization of endothelin-converting enzyme-2. Implication for a role in the nonclassical processing of regulatory peptides. J. Biol. Chem. 278, 1470414711.
  • Naggert J. K., Fricker L. D., Varlamov O., Nishina P. M., Rouille Y., Steiner D. F., Carroll R. J., Paigen B. J. and Leiter E. H. (1995) Hyperproinsulinemia in obese fat/fat mice associated with a point mutation in the carboxypeptidase E gene and reduced carboxypeptidase E activity in the pancreatic islets. Nat. Genet. 10, 135142.
  • Nakayama K. (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327, 625635.
  • Nielsen H. and Krogh A. (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 122130.
  • Nielsen H., Engelbrecht J., Brunak S. and Von Heijne G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 16.
  • Normant E., Schwartz J. C. and Gros C. (1996) A novel [125I]iodinated carboxypeptidase A substrate detects a metallopeptidase activity distinct from carboxypeptidase A in brain. Neuropeptides 30, 1317.
  • Novikova E. G., Eng F. J., Yan L., Qian Y. and Fricker L. D. (1999) Characterization of the enzymatic properties of the first and second domains of metallocarboxypeptidase D. J. Biol. Chem. 274, 2888728892.
  • Novikova E. G., Reznik S. E., Varlamov O. and Fricker L. D. (2000) Carboxypeptidase Z is present in the regulated secretory pathway and extracellular matrix in cultured cells and in human tissues. J. Biol. Chem. 275, 48654870.
  • Pan H., Che F. Y., Peng B., Steiner D. F., Pintar J. E. and Fricker L. D. (2006) The role of prohormone convertase-2 in hypothalamic neuropeptide processing: a quantitative neuropeptidomic study. J. Neurochem. 98, 17631777.
  • Paxinos G. and Franklin K. B. J. (2001) The Mouse Brain in Stereotaxic Coordinates. Academic Press, San Diego, CA.
  • Pohl T., Zimmer M., Mugele K. and Spiess J. (1991) Primary structure and functional expression of a glutaminyl cyclase. Proc. Natl Acad. Sci. USA 88, 1005910063.
  • Prigge S. T., Mains R. E., Eipper B. A. and Amzel L. M. (2000) New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell. Mol. Life Sci. 57, 12361259.
  • Rovere C., Viale A., Nahon J. and Kitabgi P. (1996) Impaired processing of brain proneurotensin and promelanin-concentrating hormone in obese fat/fat mice. Endocrinology 137, 29542958.
  • Sayah M., Fortenberry Y., Cameron A. and Lindberg I. (2001) Tissue distribution and processing of proSAAS by proprotein convertases. J. Neurochem. 76, 18331841.
  • Scamuffa N., Calvo F., Chretien M., Seidah N. G. and Khatib A. M. (2006) Proprotein convertases: lessons from knockouts. FASEB J. 20, 19541963.
  • Seidah N. G. and Chretien M. (1997) Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr. Opin. Biotechnol. 8, 602607.
  • Seidah N. G. and Chretien M. (2004a) Proprotein convertase 2, in Handbook of Proteolytic Enzymes (BarrettA. J., RawlingsN. D. and WoessnerJ. F., eds), pp. 18651868. Academic Press, San Diego, CA.
  • Seidah N. G. and Chretien M. (2004b) Proprotein convertase I, in Handbook of Proteolytic Enzymes (BarrettA. J., RawlingsN. D. and WoessnerJ. F., eds), pp. 18611864. Academic Press, San Diego, CA.
  • Skold K., Svensson M., Kaplan A., Bjorkesten L., Astrom J. and Andren P. E. (2002) A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics 2, 447454.
  • Srinivasan S., Bunch D. O., Feng Y. et al. (2004) Deficits in reproduction and pro-gonadotropin-releasing hormone processing in male Cpefat mice. Endocrinology 145, 20232034.
  • Strand F. L. (2003) Neuropeptides: general characteristics and neuropharmaceutical potential in treating CNS disorders. Prog. Drug Res. 61, 137.
  • Svensson M., Skold K., Svenningsson P. and Andren P. E. (2003) Peptidomics-based discovery of novel neuropeptides. J. Proteome Res. 2, 213219.
  • Svensson M., Skold K., Nilsson A., Falth M., Nydahl K., Svenningsson P. and Andren P. E. (2007a) Neuropeptidomics: MS applied to the discovery of novel peptides from the brain. Anal. Chem. 79, 1521.
  • Svensson M., Skold K., Nilsson A., Falth M., Svenningsson P. and Andren P. E. (2007b) Neuropeptidomics: expanding proteomics downwards. Biochem. Soc. Trans. 35, 588593.
  • Turner A. J., Tipnis S. R., Guy J. L., Rice G. and Hooper N. M. (2002) ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can. J. Physiol. Pharmacol. 80, 346353.
  • Udupi V., Gomez P., Song L., Varlamov O., Reed J. T., Leiter E. H., Fricker L. D. and Greeley G. H. J. (1997) Effect of carboxypeptidase E deficiency on progastrin processing and gastrin mRNA expression in mice with the fat mutation. Endocrinology 138, 19591963.
  • Varlamov O. and Fricker L. D. (1996) The C-terminal region of carboxypeptidase E involved in membrane binding is distinct from the region involved with intracellular routing. J. Biol. Chem. 271, 60776083.
  • Varlamov O. and Fricker L. D. (1998) Intracellular trafficking of metallocarboxypeptidase D in AtT-20 cells: localization to the trans-Golgi network and recycling from the cell surface. J. Cell Sci. 111, 877885.
  • Varlamov O., Leiter E. H. and Fricker L. D. (1996) Induced and spontaneous mutations at Ser202 of carboxypeptidase E: effect on enzyme expression, activity, and intracellular routing. J. Biol. Chem. 271, 1398113986.
  • Varlamov O., Eng F. J., Novikova E. G. and Fricker L. D. (1999a) Localization of metallocarboxypeptidase D in AtT-20 cells: potential role in prohormone processing. J. Biol. Chem. 274, 1475914767.
  • Varlamov O., Wu F., Shields D. and Fricker L. D. (1999b) Biosynthesis and packaging of carboxypeptidase D into nascent secretory vesicles in pituitary cell lines. J. Biol. Chem. 274, 1404014045.
  • Wegrzyn J., Lee J., Neveu J. M., Lane W. S. and Hook V. (2007) Proteomics of neuroendocrine secretory vesicles reveal distinct functional systems for biosynthesis and exocytosis of peptide hormones and neurotransmitters. J. Proteome Res. 6, 16521665.
  • Wei S., Segura S., Vendrell J., Aviles F. X., Lanoue E., Day R., Feng Y. and Fricker L. D. (2002) Identification and characterization of three members of the human metallocarboxypeptidase gene family. J. Biol. Chem. 277, 1495414964.
  • Wei S., Feng Y., Kalinina E. and Fricker L. D. (2003) Neuropeptide-processing carboxypeptidases. Life Sci. 73, 655662.
  • Wei S., Feng Y., Che F.-Y., Pan H., Mzhavia N., Devi L., McKenzie A. A., Levin N., Richards W. G. and Fricker L. D. (2004) Obesity and diabetes in transgenic mice expressing proSAAS. J. Endocrinol. 180, 357368.
  • Williams G., Harrold J. A. and Cutler D. J. (2000) The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proc. Nutr. Soc. 59, 385396.
  • Woods S. C., Schwartz M. W., Baskin D. G. and Seeley R. J. (2000) Food intake and the regulation of body weight. Annu. Rev. Psychol. 51, 255277.
  • Zhou A., Webb G., Zhu X. and Steiner D. F. (1999) Proteolytic processing in the secretory pathway. J. Biol. Chem. 274, 2074520748.
  • Zhu X. and Lindberg I. (1995) 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J. Cell Biol. 129, 16411650.
  • Zhu X., Rouille Y., Lamango N. S., Steiner D. F. and Lindberg I. (1996) Internal cleavage of the inhibitory 7B2 CT peptide by PC2: a potential mechanism for its inactivation. Proc. Natl Acad. Sci. USA 93, 49194924.