SEARCH

SEARCH BY CITATION

References

  • Banner S. E., Carter M. and Sanger G. J. (1995) 5-Hydroxytryptamine3 receptor antagonism modulates a noxious visceral pseudoaffective reflex. Neuropharmacology 34, 263267.
  • Belelli D., Balcarek J. M., Hope A. G., Peters J. A., Lambert J. J. and Blackburn T. P. (1995) Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. Mol. Pharmacol. 48, 10541062.
  • Birney E., Clamp M. and Durbin R. (2004) GeneWise and Genomewise. Genome Res. 14, 988995.
  • Boyd G. W., Low P., Dunlop J. I., Robertson L. A., Vardy A., Lambert J. J., Peters J. A. and Connolly C. N. (2002) Assembly and cell surface expression of homomeric and heteromeric 5-HT3 receptors: the role of oligomerization and chaperone proteins. Mol. Cell. Neurosci. 21, 3850.
  • Boyd G. W., Doward A. I., Kirkness E. F., Millar N. S. and Connolly C. N. (2003) Cell surface expression of 5-hydroxytryptamine type 3 receptors is controlled by an endoplasmic reticulum retention signal. J. Biol. Chem. 278, 2768127687.
  • Brady C. A., Stanford I. M., Ali I., Lin L., Williams J. M., Dubin A. E., Hope A. G. and Barnes N. M. (2001) Pharmacological comparison of human homomeric 5-HT3A receptors versus heteromeric 5-HT3A/3B receptors. Neuropharmacology 41, 282284.
  • Castillo M., Mulet J., Gutierrez L. M., Ortiz J. A., Castelan F., Gerber S., Sala S., Sala F. and Criado M. (2005) Dual role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J. Biol. Chem. 280, 2706227068.
  • Cheng A., McDonald N. A. and Connolly C. N. (2005) Cell surface expression of 5-hydroxytryptamine type 3 receptors is promoted by RIC-3. J. Biol. Chem. 280, 2250222507.
  • Cheng A., Bollan K. A., Greenwood S. M., Irving A. J. and Connolly C. N. (2007) Differential subcellular localization of RIC-3 isoforms and their role in determining 5-HT3 receptor composition. J. Biol. Chem. 282, 2615826166.
  • Costall B. and Naylor R. J. (2004) 5-HT3 receptors. Curr. Drug Targets CNS Neurol. Disord. 3, 2737.
  • Das P. and Dillon G. H. (2003) The 5-HT3B subunit confers reduced sensitivity to picrotoxin when co-expressed with the 5-HT3A receptor. Brain Res. Mol. Brain Res. 119, 207212.
  • Das P. and Dillon G. H. (2005) Molecular determinants of picrotoxin inhibition of 5-hydroxytryptamine type 3 receptors. J. Pharmacol. Exp. Ther. 314, 320328.
  • Davies P. A., Pistis M., Hanna M. C., Peters J. A., Lambert J. J., Hales T. G. and Kirkness E. F. (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397, 359363.
  • De P. F. and Tonini M. (2001) Irritable bowel syndrome: new agents targeting serotonin receptor subtypes. Drugs 61, 317332.
  • Downie D. L., Hope A. G., Lambert J. J., Peters J. A., Blackburn T. P. and Jones B. J. (1994) Pharmacological characterization of the apparent splice variants of the murine 5-HT3 R-A subunit expressed in Xenopus laevis oocytes. Neuropharmacology 33, 473482.
  • Ebino K. Y., Shutoh Y. and Takahashi K. W. (1993) Coprophagy in rabbits: autoingestion of hard feces. Jikken Dobutsu 42, 611613.
  • Fasching P. A., Kollmannsberger B., Strissel P. L. et al. (2008) Polymorphisms in the novel serotonin receptor subunit gene HTR3C show different risks for acute chemotherapy-induced vomiting after anthracycline chemotherapy. J. Cancer Res. Clin. Oncol. 134, 10791086.
  • Gunthorpe M. J., Peters J. A., Gill C. H., Lambert J. J. and Lummis S. C. (2000) The 4′lysine in the putative channel lining domain affects desensitization but not the single-channel conductance of recombinant homomeric 5-HT3A receptors. J. Physiol. 522 Pt 2, 187198.
  • Holland P. M., Abramson R. D., Watson R. and Gelfand D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 72767280.
  • Van Hooft J. A., Spier A. D., Yakel J. L., Lummis S. C. and Vijverberg H. P. (1998) Promiscuous coassembly of serotonin 5-HT3 and nicotinic alpha4 receptor subunits into Ca(2+)-permeable ion channels. Proc. Natl Acad. Sci. USA 95, 1145611461.
  • Hope A. G., Downie D. L., Sutherland L., Lambert J. J., Peters J. A. and Burchell B. (1993) Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. Eur. J. Pharmacol. 245, 187192.
  • Karnovsky A. M., Gotow L. F., McKinley D. D. et al. (2003) A cluster of novel serotonin receptor 3-like genes on human chromosome 3. Gene 319, 137148.
  • Kelley S. P., Dunlop J. I., Kirkness E. F., Lambert J. J. and Peters J. A. (2003) A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature 424, 321324.
  • Krzywkowski K., Davies P. A., Feinberg-Zadek P. L., Brauner-Osborne H. and Jensen A. A. (2008) High-frequency HTR3B variant associated with major depression dramatically augments the signaling of the human 5-HT3AB receptor. Proc. Natl Acad. Sci. USA 105, 722727.
  • Van Lelyveld N., Linde J. T., Schipper M. and Samsom M. (2008) Candidate genotypes associated with functional dyspepsia. Neurogastroenterol. Motil. 20, 767773.
  • Lummis S. C., Beene D. L., Lee L. W., Lester H. A., Broadhurst R. W. and Dougherty D. A. (2005) Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248252.
  • Malik N. M., Moore G. B., Smith G., Liu Y. L., Sanger G. J. and Andrews P. L. (2006) Behavioural and hypothalamic molecular effects of the anti-cancer agent cisplatin in the rat: a model of chemotherapy-related malaise? Pharmacol. Biochem. Behav. 83, 920.
  • Maricq A. V., Peterson A. S., Brake A. J., Myers R. M. and Julius D. (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254, 432437.
  • Miyake A., Mochizuki S., Takemoto Y. and Akuzawa S. (1995) Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol. Pharmacol. 48, 407416.
  • Niesler B., Frank B., Kapeller J. and Rappold G. A. (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 310, 101111.
  • Niesler B., Walstab J., Combrink S. et al. (2007) Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Mol. Pharmacol. 72, 817.
  • Peters J. A., Hales T. G. and Lambert J. J. (2005) Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. Trends Pharmacol. Sci. 26, 587594.
  • Quirk P. L., Rao S., Roth B. L. and Siegel R. E. (2004) Three putative N-glycosylation sites within the murine 5-HT3A receptor sequence affect plasma membrane targeting, ligand binding, and calcium influx in heterologous mammalian cells. J. Neurosci. Res. 77, 498506.
  • Reeves D. C. and Lummis S. C. (2002) The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review). Mol. Membr. Biol. 19, 1126.
  • Sanger G. J. (1995) Preclinical differences in 5-HT3 receptor antagonist characteristics, in Serotonin and the Scientific basis of Anti-emetic Therapy (ReynoldsD. J. M., AndrewsP. L. R. and DavisC. J., eds), pp. 155163. Oxford Clinical Communications, Oxford.
  • Simon S. and Massoulie J. (1997) Cloning and expression of acetylcholinesterase from Electrophorus. Splicing pattern of the 3′ exons in vivo and in transfected mammalian cells. J. Biol. Chem. 272, 3304533055.
  • Spiller R. C. (2004) Irritable bowel syndrome. Br. Med. Bull. 72, 1529.
  • Sun H., Hu X. Q., Moradel E. M., Weight F. F. and Zhang L. (2003) Modulation of 5-HT3 receptor-mediated response and trafficking by activation of protein kinase C. J. Biol. Chem. 278, 3415034157.
  • Thompson A. J. and Lummis S. C. (2006) 5-HT3 receptors. Curr. Pharm. Des. 12, 36153630.
  • Tzvetkov M. V., Meineke C., Oetjen E., Hirsch-Ernst K. and Brockmoller J. (2007) Tissue-specific alternative promoters of the serotonin receptor gene HTR3B in human brain and intestine. Gene 386, 5262.
  • Unwin N. (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967989.
  • Wilgenbusch J. C. and Swofford D. (2003) Inferring evolutionary trees with PAUP*. Curr. Protoc. Bioinformatics Chapter 6, Unit.