SEARCH

SEARCH BY CITATION

References

  • Ackermann R. F. and Lear J. L. (1989) Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose. J. Cereb. Blood Flow Metab. 9, 774785.
  • Adachi K., Cruz N. F., Sokoloff L. and Dienel G. A. (1995) Labeling of metabolic pools by [6-14C]glucose during K(+)-induced stimulation of glucose utilization in rat brain. J. Cereb Blood Flow Metab. 15, 97110.
  • Badar-Goffer R. S., Ben-Yoseph O., Bachelard H. S. and Morris P. G. (1992) Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem. J. 282, 22530.
  • Collins R. C., McCandless D. W. and Wagman I. L. (1987) Cerebral glucose utilization: comparison of [14C]deoxyglucose and [6-14C]glucose quantitative autoradiography. J. Neurochem. 49, 15641570.
  • Cremer J. E. (1980) Measurement of brain substrate utilization in adult and infant rats using various 14C-labeled precursors, in Cerebral Metabolism and Neural Function (PassonneauJ. V., HawkinsR. A., LustW. D. and WelshF. A., eds), pp. 300308. Williams & Wilkins, Baltimore, MD.
  • Cremer J. E. and Heath D. F. (1974) The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem. J. 142, 52744.
  • Cremer J. E., Sarna G. S., Teal H. M. and Cunningham V. J. (1978) Amino acid precursors: their transport into brain and initial metabolism, in Amino Acids as Chemical Transmitters (FonnumF., ed.), [Proceedings of the NATO Advanced Study Institute on Amino Acids as Chemical Transmitters held in Oslo, Norway, 1977], pp. 669689. Plenum Press, New York.
  • Cremer J. E., Cunningham V. J., Pardridge W. M., Braun L. D. and Oldendorf W. H. (1979) Kinetics of blood–brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J. Neurochem. 33, 43945.
  • Cruz N. F., Adachi K. and Dienel G. A. (1999) Metabolite trafficking during K+-induced spreading cortical depression: Rapid efflux of lactate from cerebral cortex. J. Cereb. Blood Flow Metab. 19, 380392.
  • Cruz N. F., Ball K. K. and Dienel G. A. (2007) Functional imaging of focal brain activation in conscious rats: impact of [(14)C]glucose metabolite spreading and release. J. Neurosci. Res. 85, 32543266.
  • De Graaf R. A., Brown P. B., Mason G. F., Rothman D. L. and Behar K. L. (2003) Detection of [1,6-13C2]-glucose metabolism in rat brain by in vivo1H-[13C]-NMR spectroscopy. Magn. Reson. Med. 49, 3746.
  • Dienel G. A., Wang R. Y. and Cruz N. F. (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J. Cereb. Blood Flow Metab. 22, 14901502.
  • Flock E. V., Tyce G. M. and Owen C. A. Jr (1969) Glucose metabolism in brains of diabetic rats. Endocrinology 85, 42837.
  • Flock E. V., Tyce G. M. and Owen C. A. Jr (1971) Glucose metabolites in blood of normal and ethanol-treated rats. Mayo Clin. Proc. 46, 3919.
  • Hawkins R. A., Miller A. L., Cremer J. E. and Veech R. L. (1974) Measurement of the rate of glucose utilization by rat brain in vivo. J. Neurochem. 23, 91723.
  • Henry P. G., Adriany G., Deelchand D., Gruetter R., Marjanska M., Öz G., Seaquist E. R., Shestov A. and Uğurbil K. (2006) In vivo13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Magn. Reson. Imaging. 24, 52739.
  • Hertz L. (1966) Neuroglial localization of potassium and sodium effects on respiration in brain. J Neurochem. 13, 137387.
  • Hertz L., Peng L. and Dienel G. A. (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab. 27, 21949.
  • Hyder F., Chase J. R., Behar K. L., Mason G. F., Siddeek M., Rothman D. L. and Shulman R. G. (1996) Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR. Proc. Natl Acad. Sci. USA 93, 76127.
  • Ide K., Schmalbruch I. K., Quistorff B., Horn A. and Secher N. H. (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J. Physiol. 522, 15964.
  • Konitzer K. and Voigt S. (1977) Metabolism of blood-borne lactate in rat brain in vivo. Acta Biol. Med. Ger. 36, 104959.
  • Lear J. L. and Ackermann R. F. (1988) Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3-4, and 6 positions using double label quantitative digital autoradiography. J. Cereb. Blood Flow. Metab. 8, 575585.
  • Lear J. and Ackermann R. F. (1989) Why the deoxyglucose method has proven so useful in cerebral activation studies: the unappreciated prevalence of stimulation-induced glycolysis. J. Cereb. Blood Flow Metab. 9, 911913.
  • Lear J. and Ackermann R. (1991) Autoradiographic comparison of FDG-based and GLU-based measurements of cerebral glucose transport and metabolism: normal and activated conditions, in Brain Work and Mental Activity, Alfred Benzon Symposium 31 (LassenN., IngvarD., RaichleM. and FribergL., eds), pp. 142152. Munskgaard, Copenhagen.
  • Lovatt D., Sonnewald U., Waagepetersen H. S., Schousboe A., He W., Lin J. H., Han X., Takano T., Wang S., Sim F. J., Goldman S. A. and Nedergaard M. (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. 27, 1225566.
  • Mason G. F., Rothman D. L., Behar K. L. and Shulman R. G. (1992) NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J. Cereb. Blood Flow Metab. 12, 43447.
  • Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G. and Novotny E. J. (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J. Cereb. Blood Flow Metab. 5, 1225.
  • Mason G. F. and Rothman D. L. (2004) Basic principles of metabolic modeling of NMR (13)C isotopic turnover to determine rates of brain metabolism in vivo. Metab. Eng. 6, 7584.
  • McIlwain H. and Bachelard H. S. (1985) Biochemistry and the Central Nervous System, 5th edn. Churchill Livingstone, Edinburgh.
  • O’Neal R. M. and Koeppe R. E. (1966) Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. J. Neurochem. 13, 83547.
  • Öz G., Berkich D. A., Henry P. G., Xu Y., LaNoue K., Hutson S. M. and Gruetter R. (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24, 112739.
  • Ponten U., Ratcheson R. A., Salford L. G. and Siesjö B. K. (1973) Optimal freezing conditions for cerebral metabolites in rats. J. Neurochem. 21, 11271138.
  • Rae C., Hare N., Bubb W. A., McEwan S. R., Bröer A., McQuillan J. A., Balcar V. J., Conigrave A. D. and Bröer S. (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. J. Neurochem. 85, 50314.
  • Shen J., Petersen K. F., Behar K. L., Brown P., Nixon T. W., Mason G. F., Petroff O. A., Shulman G. I., Shulman R. G. and Rothman D. L. (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo13C NMR. Proc. Natl Acad. Sci. USA 96, 823540.
  • Shen J., Rothman D. L., Behar K. L. and Xu S. (2009) Determination of the glutamate–glutamine cycling flux using two-compartment dynamic metabolic modeling is sensitive to astroglial dilution. J. Cereb. Blood Flow Metab. 29, 10818.
  • Siesjö B. K. (1978) Brain Energy Metabolism. Wiley-Interscience, John Wiley & Sons, Chichester.
  • Simpson I. A., Carruthers A. and Vannucci S. J. (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow Metab. 27, 176691.
  • Smith Q. R., Momma S., Aoyagi M. and Rapoport S. I. (1987) Kinetics of neutral amino acid transport across the blood–brain barrier. J. Neurochem. 49, 16518.
  • Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O. and Shinohara M. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897916.
  • Tuček S. and Cheng S. C. (1974) Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J Neurochem. 22, 893914.
  • Vannucci S. J. and Simpson I. A. (2003) Developmental switch in brain nutrient transporter expression in the rat. Am. J. Physiol. Endocrinol. Metab. 285, E112734.
  • Veech R. L., Harris R. L., Veloso D. and Veech E. H. (1973) Freeze-blowing: a new technique for the study of brain in vivo. J. Neurochem. 20, 1838.
  • Veech R. L. (1980) Freeze-blowing of brain and the interpretation of the meaning of certain metabolite levels, in Cerebral Metabolism and Neural Function (PassonneauJ. V., HawkinsR. A., LustW. D. and WelshF. A., eds.), pp. 3441. Williams and Wilkins, Baltimore, MD.
  • Zielke H. R., Zielke C. L., Baab P. J. and Tildon J. T. (2007) Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats. J. Neurochem. 101, 916.