Interaction of catechol and non-catechol substrates with externally or internally facing dopamine transporters


Address correspondence and reprint requests to Maarten E. A. Reith, Department of Psychiatry, Millhauser Laboratories, New York University, 550 First Avenue, Room MHL-HN 518, New York, NY 10016, USA. E-mail:


Our previous work suggested that collapsing the Na+ gradient and membrane potential converts the dopamine (DA) transporter (DAT) to an inward-facing conformation with a different substrate binding profile. Here, DAT expressing human embryonic kidney 293 cells were permeabilized with digitonin, disrupting ion/voltage gradients and allowing passage of DAT substrates. The potency of p-tyramine and other non-catechols (d-amphetamine, β-phenethylamine, MPP+) in inhibiting cocaine analog binding to DAT in digitonin-treated cells was markedly weakened to a level similar to that observed in cell-free membranes. In contrast, the potency of DA and another catechol, norepinephrine, was not significantly changed by the same treatment, whereas epinephrine showed only a modest reduction. These findings suggest that catechol substrates interact symmetrically with both sides of DAT and non-catechol substrates, favoring binding to outward-facing transporter. In the cocaine analog binding assay, the mutant W84L displayed enhanced intrinsic binding affinity for substrates in interacting with both outward- and inward-facing states; D313N showed wild-type-like symmetric binding; but D267L and E428Q showed an apparent improvement in the permeation pathway from the external face towards the substrate site. Thus, the structure of both substrate and transporter play a role in the sidedness and mode of interaction between them.