SEARCH

SEARCH BY CITATION

References

  • Aarts M., Liu Y., Liu L., Besshoh S., Arudine M., Gurd J. W., Wang Y. T., Salter M. W. and Tymianski M. (2002) Treatment of ischemic brain damage by perturbing NMDA receptor PSD-95 protein interaction. Science 298, 846850.
  • Alderton W. K., Cooper C. E. and Knowles G. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593615.
  • Andrew P. J. and Mayer B. (1999) Enzymatic function of nitric oxide synthases. Cardiovasc. Res. 43, 521531.
  • D’Anglemont de Tassigny X., Campagne C., Stecilorum S. and Prevot V. (2009) Estradiol induces physical association of neuronal nitric oxide synthase with NMDA receptor and promotes nitric oxide formation via estrogen receptor activation in primary neuronal cultures. J. Neurochem. 109, 214224.
  • Araujo I. M. and Carvalho C. M. (2005) Role of nitric oxide and calpain activation in neuronal death and survival. Curr. Drug Targets CNS Neurol. Disord. 4, 319324.
  • Arundine M., Sanelli T., Ping He B. and Strong M. J. (2003) NMDA induces NOS 1 translocation to the cell membrane in NGF-differentiated PC 12 cells. Brain Res. 976, 14958.
  • Averna M., Stifanese R., De Tullio R., Salamino F., Bertuccio M., Pontremoli S. and Melloni E. (2007) Proteolytic degradation of nitric oxide synthase isoforms by calpain is modulated by the expression levels of HSP90. FEBS J. 274, 61166127.
  • Averna M., Stifanese R., De Tullio R., Salamino F., Pontremoli S. and Melloni E. (2008a) In vivo degradation of nitric oxide synthase (NOS) and heat shock protein 90 (HSP90) by calpain is modulated by the formation of a NOS-HSP90 heterocomplex. FEBS J. 275, 25012511.
  • Averna M., Stifanese R., De Tullio R., Passalacqua M., Salamino F., Pontremoli S. and Melloni E. (2008b) Functional Role of HSP90 complexes with endothelial nitric-oxide synthase (eNOS) and calpain on nitric oxide generation in endothelial cells. J. Biol. Chem. 43, 2906929076.
  • Bender A., Demady D. R. and Osawa Y. (2000) Ubiquitination of neuronal nitric-oxide synthase in vitro and in vivo. J. Biol. Chem. 275, 1740717411.
  • Cao J., Viholainen J. I., Dart C., Warwick H. K., Leyland M. L. and Courtney M. J. (2005) The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J. Cell Biol. 168, 117126.
  • De Tullio R., Passalacqua M., Averna M., Salamino F., Melloni E. and Pontremoli S. (1999) Changes in intracellular localization of calpastatin during calpain activation. Biochem. J. 343, 467472.
  • Dunbar A. Y., Kamada Y., Jenkins G. J., Lowe E. R., Billecke S. S. and Osawa Y. (2004) Ubiquitination and degradation of neuronal nitric-oxide synthase in vitro: dimer stabilization protects the enzyme from proteolysis. Mol. Pharmacol. 66, 964969.
  • Gamerdinger M., Manthey D. and Behl C. (2006) Oestrogen receptor subtype-specific repression of calpain expression and calpain enzymatic activity neuronal cells-implications for neuroprotection against Ca2+-mediated excitotoxicity. J. Neurochem. 97, 5768.
  • Goudenege S., Poussard S., Dulong S. and Cottin P. (2005) Biologically active milli-calpain associated with caveolae is involved in a spatially compartmentalised signalling involving protein kinase C alpha and myristoylated alanine-rich C-kinase substrate (MARCKS). Int. J. Biochem. Cell Biol. 37, 19001910.
  • Govers R., De Bree P. and Rabelink T. J. (2003) Involvement of the proteasome in activation of endothelial nitric oxide synthase. Life Sci. 73, 22252236.
  • Hajimohammadreza I., Raser K. J., Nath R., Nadimpalli R., Scott M. and Wang K. K. W. (1997) Neuronal Nitric Oxide Synthase and calmodulin-dependent protein kinase IIα undergo neurotoxin-induced proteolysis. J. Neurochem. 69, 10061013.
  • Harris B. Z. and Lim W. A. (2001) Mechanism and role of PDZ domains in signalling complex assembly. J. Cell Sci. 114, 32193231.
  • Hawkins R. D., Son H. and Arancio O. (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog. Brain Res. 118, 155172.
  • Hong D. H., Huan J., Ou B. R., Yeh J. Y., Saido T. C., Cheeke P. R. and Forsberg N. E. (1995) Protein kinase C isoforms in muscle cells and their regulation by phorbol ester and calpain. Biochim. Biophys. Acta 1267, 4554.
  • Ishii H., Shibuya K., Ohta Y., Mukai H., Uchino S., Takata N., Rose J. A. and Kawato S. (2006) Enhancement of nitric oxide production by association of nitric oxide synthase with N-methyl-D-aspartate receptors via postsynaptic density 95 in genetically engineered Chinese hamster ovary cells: real-time fluorescence imaging nitric oxide sensitive dye. J. Neurochem. 96, 15311539.
  • Kim E. and Sheng M. (2004) PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771781.
  • Kim H., Im W., Kim S., Kim S. H., Sung J., Kim M. and Lee K. (2007) Calcium-influx increases SOD1 aggregates via nitric oxide in cultured motor neurons. Exp. Mol. Med. 39, 574582.
  • Kojima H., Nakatsubo N., Kikuchi K., Kawahara S., Kirino Y., Nagoshi H., Hirata Y. and Nagano T. (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Analyt. Chem. 70, 24462453.
  • Kolodziejski P. J., Musial A., Koo J. S. and Eissa N. T. (2002) Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proc. Natl Acad. Sci. USA 99, 1231512320.
  • Kone B. C., Kuncewicz T., Zhang W. and Yu Z. (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am. J. Physiol. Renal Physiol. 285, 178190.
  • Kornau H. C., Schenker L., Kennedy N. B. and Seeburg P. H. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 17371740.
  • Leammli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • Michetti M., Salamino F., Tedesco I., Averna M., Minafra R., Melloni E. and Pontremoli S. (1996) Autolysis of human erythrocyte calpain produces two active enzyme forms with different cell localization. FEBS Lett. 392, 1115.
  • Musial A. and Eissa T. (2001) Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J. Biol. Chem. 276, 2426824273.
  • Nagatsubo N., Kojima H., Kikuchi K., Nagoshi H., Hirata Y., Maeda D., Imai Y., Irimura T. and Nagano T. (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett. 427, 263266.
  • Ohnishi T., Okuda-Ashitaka E., Matsumura S., Katano T., Nishizawa M. and Ito S. (2008) Characterization of signaling pathway for the translocation of neuronal nitric oxide synthase to the plasma membrane by PACAP. J. Neurochem. 105, 22712285.
  • Osawa Y., Lowe E. R., Everett A. C., Dunbar A. Y. and Billecke S. S. (2003) Proteolytic degradation of nitric oxide synthase: effect of inhibitors and role of HSP90-based chaperones. J. Pharmacol. Exp. Ther. 304, 493497.
  • Palejwala S. and Goldsmith L. T. (1992) Ovarian expression of cellular Ki-ras p21 varies with physiological status. Proc. Natl Acad. Sci. USA 89, 42024206.
  • Patel Y., Kakkar V. V. and Authi K. S. (1994) Calpain-induced down-regulation of protein kinase C inhibits dense-granulate secretion in human platelets. Inhibition of platelet aggregation or calpain activity preserves protein kinase C restores full secretion. Biochim. Biophys. Acta 1224, 480488.
  • Prast H. and Philippou A. (2001) Nitric oxide as modulator of neuronal function. Prog. Neurobiol. 64, 5168.
  • Rameau G. A., Tukey D. S., Garcin-Hosfield E. D., Titcombe R. F., Misra C., Khatri L., Getzoff E. D. and Ziff E. B. (2007) Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J. Neurosci. 27, 34453455.
  • Sattler R., Xiong Z., Lu W. Y., Hafner M., MacDonald J. F. and Tymianski M. (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 18451848.
  • Stalker T. J., Gong Y. and Scalia R. (2005) The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes. Diabetes 54, 11321140.
  • Volbracht C., Chua B. T., Ng C. P., Bahr B. A., Hong W. and Li P. (2005) The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. J. Neurochem. 93, 12801292.
  • Walker G., Pfeilschifter J., Otten U. and Kunz D. (2001) Proteolytic cleavage of inducible nitric oxide synthase (iNOS) by calpain I. Biochim. Biophys. Acta 1568, 216224.
  • Wu H. Y., Tomizawa K., Oda Y., Wei F. Y., Lu Y. F., Matsushita M., Li S. T., Moriwaki A. and Matsui H. (2004) Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J. Biol. Chem. 279, 49294940.
  • Wu H. Y., Yuen E. Y., Lu Y., Matsushita M., Matsui H., Yan Z. and Tomizawa K. (2005) Regulation of N-methyl-D-aspartate receptors by calpain in cortical neurons. J. Biol. Chem. 280, 2158821593.
  • Wu H. Y., Tomizawa K. and Matsui H. (2007) Calpain-calcineurin signalling in the pathogenesis of calcium-dependent disorder. Acta Med. Okayama 61, 123137.
  • Yun H. Y., Dawson V. L. and Dawson T. M. (1996) Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10, 291316.