SEARCH

SEARCH BY CITATION

References

  • Alessandrini A., Namura S., Moskowitz M. A. and Bonventre J. V. (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc. Natl Acad. Sci. USA 96, 1286612869.
  • Atkins C. M., Selcher J. C., Petraitis J. J., Trzaskos J. M. and Sweatt J. D. (1998) The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602609.
  • Austin R. C., Lentz S. R. and Werstuck G. H. (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 11(Suppl 1), S5664.
  • Banko J. L., Hou L. and Klann E. (2004) NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1. J. Neurochem. 91, 462470.
  • Bhat N. R. and Zhang P. (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J. Neurochem. 72, 112119.
  • Blum S., Moore A. N., Adams F. and Dash P. K. (1999) A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 35353544.
  • Boulton T. G., Nye S. H., Robbins D. J., Ip N. Y., Radziejewska E., Morgenbesser S. D., DePinho R. A., Panayotatos N., Cobb M. H. and Yancopoulos G. D. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663675.
  • Broch O. J. and Ueland P. M. (1984) Regional distribution of homocysteine in the mammalian brain. J. Neurochem. 43, 17551757.
  • Cao J., Viholainen J. I., Dart C., Warwick H. K., Leyland M. L. and Courtney M. J. (2005) The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J. Cell Biol. 168, 117126.
  • Chandler L. J., Sutton G., Dorairaj N. R. and Norwood D. (2001) N-methyl-d-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J. Biol. Chem. 276, 26272636.
  • Clausen F., Lundqvist H., Ekmark S., Lewen A., Ebendal T. and Hillered L. (2004) Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J. Neurotrauma 21, 11681182.
  • Colucci-D’Amato L., Perrone-Capano C. and Di Porzio U. (2003) Chronic activation of ERK and neurodegenerative diseases. BioEssays 25, 10851095.
  • Coogan A. N., O’Leary D. M. and O’Connor J. J. (1999) P42/44 MAP kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J. Neurophysiol. 81, 103110.
  • Daxhelet G. A., Coene M. M., Hoet P. P. and Cocito C. G. (1989) Spectrofluorometry of dyes with DNAs of different base composition and conformation. Anal. Biochem. 179, 401403.
  • Dolmetsch R. E., Pajvani U., Fife K., Spotts J. M. and Greenberg M. E. (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 333339.
  • Duan W., Ladenheim B., Cutler R. G., Kruman II, Cadet J. L. and Mattson M. P. (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J. Neurochem. 80, 101110.
  • Durkin J. P., Tremblay R., Buchan A., Blosser J., Chakravarthy B., Mealing G., Morley P. and Song D. (1996) An early loss in membrane protein kinase C activity precedes the excitatory amino acid-induced death of primary cortical neurons. J. Neurochem. 66, 951962.
  • Endres M., Ahmadi M., Kruman I., Biniszkiewicz D., Meisel A. and Gertz K. (2005) Folate deficiency increases postischemic brain injury. Stroke 36, 321325.
  • English J. D. and Sweatt J. D. (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 1910319106.
  • Gottfries C. G., Lehmann W. and Regland B. (1998) Early diagnosis of cognitive impairment in the elderly with the focus on Alzheimer’s disease. J. Neural Transm. 105, 773786.
  • Hankey G. J. and Eikelboom J. W. (2001) Homocysteine and stroke. Curr. Opin. Neurol. 14, 95102.
  • Hara T., Hamada J., Yano S., Morioka M., Kai Y. and Ushio Y. (2003) CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA1 region. J. Neurochem. 86, 805814.
  • Den Heijer T., Vermeer S. E., Clarke R., Oudkerk M., Koudstaal P. J., Hofman A. and Breteler M. M. (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126, 170175.
  • Herdegen T. and Leah J. D. (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev. 28, 370490.
  • Ho P. I., Ortiz D., Rogers E. and Shea T. B. (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J. Neurosci. Res. 70, 694702.
  • Irving E. A., Barone F. C., Reith A. D., Hadingham S. J. and Parsons A. A. (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res. Mol. Brain Res. 77, 6575.
  • Ivanov A., Pellegrino C., Rama S., Dumalska I., Salyha Y., Ben-Ari Y. and Medina I. (2006) Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J. Physiol. 572, 789798.
  • Jara-Prado A., Ortega-Vazquez A., Martinez-Ruano L., Rios C. and Santamaria A. (2003) Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox. Res. 5, 237243.
  • Jiang Q., Gu Z., Zhang G. and Jing G. (2000a) N-methyl-d-aspartate receptor activation results in regulation of extracellular signal-regulated kinases by protein kinases and phosphatases in glutamate-induced neuronal apototic-like death. Brain Res. 887, 285292.
  • Jiang Q., Gu Z., Zhang G. and Jing G. (2000b) Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons. Brain Res. 857, 7177.
  • Kamath A. F., Chauhan A. K., Kisucka J., Dole V. S., Loscalzo J., Handy D. E. and Wagner D. D. (2006) Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 107, 591593.
  • Kim M. J., Dunah A. W., Wang Y. T. and Sheng M. (2005) Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745760.
  • Kornhauser J. M. and Greenberg M. E. (1997) A kinase to remember: dual roles for MAP kinase in long-term memory. Neuron 18, 839842.
  • Kruman II, Culmsee C., Chan S. L., Kruman Y., Guo Z., Penix L. and Mattson M. P. (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 69206926.
  • Kruman II, Kumaravel T. S., Lohani A., Pedersen W. A., Cutler R. G., Kruman Y., Haughey N., Lee J., Evans M. and Mattson M. P. (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J. Neurosci. 22, 17521762.
  • Lazarewicz J. W., Ziembowicz A., Matyja E., Stafiej A. and Zieminska E. (2003) Homocysteine-evoked 45Ca release in the rabbit hippocampus is mediated by both NMDA and group I metabotropic glutamate receptors: in vivo microdialysis study. Neurochem. Res. 28, 259269.
  • Lee B., Butcher G. Q., Hoyt K. R., Impey S. and Obrietan K. (2005) Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J. Neurosci. 25, 11371148.
  • Lenz G. and Avruch J. (2005) Glutamatergic regulation of the p70S6 kinase in primary mouse neurons. J. Biol. Chem. 280, 3812138124.
  • Lesuisse C. and Martin L. J. (2002) Immature and mature cortical neurons engage different apoptotic mechanisms involving caspase-3 and the mitogen-activated protein kinase pathway. J. Cereb. Blood Flow Metab. 22, 935950.
  • Lindgren A., Brattstrom L., Norrving B., Hultberg B., Andersson A. and Johansson B. B. (1995) Plasma homocysteine in the acute and convalescent phases after stroke. Stroke 26, 795800.
  • Lipton S. A., Kim W. K., Choi Y. B., Kumar S., D’Emilia D. M., Rayudu P. V., Arnelle D. R. and Stamler J. S. (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proc. Natl Acad. Sci. USA 94, 59235928.
  • Luchowska E., Luchowski P., Paczek R., Ziembowicz A., Kocki T., Turski W. A., Wielosz M., Lazarewicz J. and Urbanska E. M. (2005) Dual effect of dl-homocysteine and S-adenosylhomocysteine on brain synthesis of the glutamate receptor antagonist, kynurenic acid. J. Neurosci. Res. 79, 375382.
  • Luo J., Wang Y., Yasuda R. P., Dunah A. W. and Wolfe B. B. (1997) The majority of N-methyl-d-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol. Pharmacol. 51, 7986.
  • Mabuchi T., Kitagawa K., Kuwabara K., Takasawa K., Ohtsuki T., Xia Z., Storm D., Yanagihara T., Hori M. and Matsumoto M. (2001) Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J. Neurosci. 21, 92049213.
  • Marshall C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179185.
  • Miller J. W. (1999) Homocysteine and Alzheimer’s disease. Nutr. Rev. 57, 126129.
  • Mori T., Wang X., Jung J. C., Sumii T., Singhal A. B., Fini M. E., Dixon C. E., Alessandrini A. and Lo E. H. (2002) Mitogen-activated protein kinase inhibition in traumatic brain injury: in vitro and in vivo effects. J. Cereb. Blood Flow Metab. 22, 444452.
  • Murray B., Alessandrini A., Cole A. J., Yee A. G. and Furshpan E. J. (1998) Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc. Natl Acad. Sci. USA 95, 1197511980.
  • Namura S., Iihara K., Takami S., Nagata I., Kikuchi H., Matsushita K., Moskowitz M. A., Bonventre J. V. and Alessandrini A. (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc. Natl Acad. Sci. USA 98, 1156911574.
  • Obeid R. and Herrmann W. (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 580, 29943005.
  • Palmer A. M., Marion D. W., Botscheller M. L., Bowen D. M. and DeKosky S. T. (1994) Increased transmitter amino acid concentration in human ventricular CSF after brain trauma. Neuroreport 6, 153156.
  • Paul S., Nairn A. C., Wang P. and Lombroso P. J. (2003) NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 3442.
  • Pende M., Fisher T. L., Simpson P. B., Russell J. T., Blenis J. and Gallo V. (1997) Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J. Neurosci. 17, 12911301.
  • Perry I. J., Refsum H., Morris R. W., Ebrahim S. B., Ueland P. M. and Shaper A. G. (1995) Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 346, 13951398.
  • Phillis J. W., Smith-Barbour M., O’Regan M. H. and Perkins L. M. (1994) Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion. Neurochem. Res. 19, 11251130.
  • Poddar R., Sivasubramanian N., DiBello P. M., Robinson K. and Jacobsen D. W. (2001) Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103, 27172723.
  • Robert K., Pages C., Ledru A., Delabar J., Caboche J. and Janel N. (2005) Regulation of extracellular signal-regulated kinase by homocysteine in hippocampus. Neuroscience 133, 925935.
  • Runden E., Seglen P. O., Haug F. M., Ottersen O. P., Wieloch T., Shamloo M. and Laake J. H. (1998) Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J. Neurosci. 18, 72967305.
  • Sacco R. L., Roberts J. K. and Jacobs B. S. (1998) Homocysteine as a risk factor for ischemic stroke: an epidemiological story in evolution. Neuroepidemiology 17, 167173.
  • Salter M. W. and Kalia L. V. (2004) Src kinases: a hub for NMDA receptor regulation. Nat. Rev. 5, 317328.
  • Segal R. A. and Greenberg M. E. (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463489.
  • Selhub J., Jacques P. F., Bostom A. G., D’Agostino R. B., Wilson P. W., Belanger A. J., O’Leary D. H., Wolf P. A., Schaefer E. J. and Rosenberg I. H. (1995) Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N. Engl. J. Med. 332, 286291.
  • Seshadri S., Beiser A., Selhub J., Jacques P. F., Rosenberg I. H., D’Agostino R. B., Wilson P. W. and Wolf P. A. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346, 476483.
  • Shi Q., Savage J. E., Hufeisen S. J., Rauser L., Grajkowska E., Ernsberger P., Wroblewski J. T., Nadeau J. H. and Roth B. L. (2003) l-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J. Pharmacol. Exp. Ther. 305, 131142.
  • Stanciu M. and DeFranco D. B. (2002) Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J. Biol. Chem. 277, 40104017.
  • Stanciu M., Wang Y., Kentor R. et al. (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 1220012206.
  • Van den Berg M., Boers G. H., Franken D. G., Blom H. J., Van Kamp G. J., Jakobs C., Rauwerda J. A., Kluft C. and Stehouwert C. D. (1995) Hyperhomocysteinaemia and endothelial dysfunction in young patients with peripheral arterial occlusive disease. Eur. J. Clin. Invest. 25, 176181.
  • Vanhoutte P., Barnier J. V., Guibert B., Pages C., Besson M. J., Hipskind R. A. and Caboche J. (1999) Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol. Cell. Biol. 19, 136146.
  • Vincent S. R., Sebben M., Dumuis A. and Bockaert J. (1998) Neurotransmitter regulation of MAP kinase signaling in striatal neurons in primary culture. Synapse 29, 2936.
  • Wang Z. Q., Wu D. C., Huang F. P. and Yang G. Y. (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res. 996, 5566.
  • Watkins D. and Rosenblatt D. S. (1989) Functional methionine synthase deficiency (cblE and cblG): clinical and biochemical heterogeneity. Am. J. Med. Genet. 34, 427434.
  • Waxman E. A. and Lynch D. R. (2005a) N-methyl-d-aspartate receptor subtype mediated bidirectional control of p38 mitogen-activated protein kinase. J. Biol. Chem. 280, 2932229333.
  • Waxman E. A. and Lynch D. R. (2005b) N-methyl-d-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 3749.
  • Xia Z., Dickens M., Raingeaud J., Davis R. J. and Greenberg M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 13261331.
  • Yun H. Y., Dawson V. L. and Dawson T. M. (1999) Glutamate-stimulated calcium activation of Ras/Erk pathway mediated by nitric oxide. Diabetes Res. Clin. Pract. 45, 113115.
  • Yuzaki M. and Connor J. A. (1999) Characterization of l-homocysteate-induced currents in Purkinje cells from wild-type and NMDA receptor knockout mice. J. Neurophysiol. 82, 28202826.
  • Zhuang S. and Schnellmann R. G. (2006) A death-promoting role for extracellular signal- regulated kinase. J. Pharmacol. Exp. Ther. 319, 991997.
  • Zieminska E., Stafiej A. and Lazarewicz J. W. (2003) Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurones. Neurochem. Int. 43, 481492.
  • Zoccolella S., Martino D., Defazio G., Lamberti P. and Livrea P. (2006) Hyperhomocysteinemia in movement disorders: current evidence and hypotheses. Curr. Vasc. Pharmacol. 4, 237243.