SEARCH

SEARCH BY CITATION

References

  • Alberts G. L., Chio C. L. and Im W. B. (2001) Allosteric modulation of the human 5-HT(7A) receptor by lipidic amphipathic compounds. Mol. Pharmacol. 60, 13491355.
  • Balmanno K. and Cook S. J. (1999) Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18, 30853097.
  • Blenau W. and Baumann A. (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect Biochem. Physiol. 48, 1338.
  • Blenau W., Erber J. and Baumann A. (1998) Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. J. Neurochem. 70, 1523.
  • Bouvier C., Salon J. A., Johnson R. A. and Civelli O. (1993) Dopaminergic activity measured in D1- and D2-transfected fibroblasts by silicon-microphysiometry. J. Recept. Res. 13, 559571.
  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Burman C., Maqueira B., Coadwell J. and Evans P. D. (2007) Eleven new putative aminergic G-protein coupled receptors from Amphioxus (Branchiostoma floridae): identification, sequence analysis and phylogenetic relationship. Invert. Neurosci. 7, 8798.
  • Cai G., Gurdal H., Smith C., Wang H. Y. and Friedman E. (1999) Inverse agonist properties of dopaminergic antagonists at the D(1A) dopamine receptor: uncoupling of the D(1A) dopamine receptor from G(s) protein. Mol. Pharmacol. 56, 989996.
  • Candiani S., Oliveri D., Parodi M., Castagnola P. and Pestarino M. (2005) AmphiD1/beta, a dopamine D1/beta-adrenergic receptor from the amphioxus Branchiostoma floridae: evolutionary aspects of the catecholaminergic system during development. Dev. Genes. Evol. 215, 631638.
  • Cardinaud B., Sugamori K. S., Coudouel S., Vincent J. D., Niznik H. B. and Vernier P. (1997) Early emergence of three dopamine D1 receptor subtypes in vertebrates. Molecular phylogenetic, pharmacological, and functional criteria defining D1A, D1B, and D1C receptors in European eel Anguilla anguilla. J. Biol. Chem. 272, 27782787.
  • Cardinaud B., Gilbert J. M., Liu F., Sugamori K. S., Vincent J. D., Niznik H. B. and Vernier P. (1998) Evolution and origin of the diversity of dopamine receptors in vertebrates. Adv. Pharmacol. 42, 936940.
  • Chen J., Rusnak M., Luedtke R. R. and Sidhu A. (2004) D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. J. Biol. Chem. 279, 3931739330.
  • Clark M. C., Khan R. and Baro D. J. (2008) Crustacean dopamine receptors: localization and G protein coupling in the stomatogastric ganglion. J. Neurochem. 104, 10061019.
  • Delsuc F., Brinkmann H., Chourrout D. and Philippe H. (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965968.
  • Demchyshyn L. L., Sugamori K. S., Lee F. J., Hamadanizadeh S. A. and Niznik H. B. (1995) The dopamine D1D receptor. Cloning and characterization of three pharmacologically distinct D1-like receptors from Gallus domesticus. J. Biol. Chem. 270, 40054012.
  • Drube S., Stirnweiss J., Valkova C. and Liebmann C. (2006) Ligand-independent and EGF receptor-supported transactivation: lessons from beta2-adrenergic receptor signalling. Cell. Signal. 18, 16331646.
  • Eason M. G., Kurose H., Holt B. D., Raymond J. R. and Liggett S. B. (1992) Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J. Biol. Chem. 267, 1579515801.
  • Evans P. D., Robb S., Cheek T. R., Reale V., Hannan F. L., Swales L. S., Hall L. M. and Midgley J. M. (1995) Agonist-specific coupling of G-protein-coupled receptors to second-messenger systems. Prog. Brain Res. 106, 259268.
  • Feng G., Hannan F., Reale V., Hon Y. Y., Kousky C. T., Evans P. D. and Hall L. M. (1996) Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster. J. Neurosci. 16, 39253933.
  • Frail D. E., Manelli A. M., Witte D. G., Lin C. W., Steffey M. E. and Mackenzie R. G. (1993) Cloning and characterization of a truncated dopamine D1 receptor from goldfish retina: stimulation of cyclic AMP production and calcium mobilization. Mol. Pharmacol. 44, 11131118.
  • Fujieda H., Scher J., Lukita-Atmadja W. and Brown G. M. (2003) Gene regulation of melatonin and dopamine receptors during eye development. Neuroscience 120, 301307.
  • Galandrin S. and Bouvier M. (2006) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol. Pharmacol. 70, 15751584.
  • Galandrin S., Oligny-Longpre G., Bonin H., Ogawa K., Gales C. and Bouvier M. (2008) Conformational rearrangements and signaling cascades involved in ligand-biased mitogen-activated protein kinase signaling through the beta1-adrenergic receptor. Mol. Pharmacol. 74, 162172.
  • Giles H., Lansdell S. J., Bolofo M. L., Wilson H. L. and Martin G. R. (1996) Characterization of a 5-HT1B receptor on CHO cells: functional responses in the absence of radioligand binding. Br. J. Pharmacol. 117, 11191126.
  • Gothert M. (1985) Role of autoreceptors in the function of the peripheral and central nervous system. Arzneimittelforschung 35, 19091916.
  • Gotzes F., Balfanz S. and Baumann A. (1994) Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors. Receptors Channels 2, 131141.
  • Insel P. A. and Ostrom R. S. (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell. Mol. Neurobiol. 23, 305314.
  • Iredale P. A. and Hill S. J. (1993) Increases in intracellular calcium via activation of an endogenous P2-purinoceptor in cultured CHO-K1 cells. Br. J. Pharmacol. 110, 13051310.
  • Kenakin T. (1995) Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16, 232238.
  • Kenakin T. (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol. Pharmacol. 72, 13931401.
  • Le Crom S., Sugamori K. S., Sidhu A., Niznik H. B. and Vernier P. (2004) Delineation of the conserved functional properties of D1A, D1B and D1C dopamine receptor subtypes in vertebrates. Biol. Cell 96, 383394.
  • Luttrell L. M., Ferguson S. S., Daaka Y. et al. (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655661.
  • Mahan L. C., Burch R. M., Monsma F. J. Jr and Sibley D. R. (1990) Expression of striatal D1 dopamine receptors coupled to inositol phosphate production and Ca2+ mobilization in Xenopus oocytes. Proc. Natl Acad. Sci. USA 87, 21962200.
  • Maqueira B., Chatwin H. and Evans P. D. (2005) Identification and characterization of a novel family of Drosophila Beta-adrenergic-like octopamine G-protein coupled receptors. J. Neurochem. 94, 547560.
  • Masu Y., Nakayama K., Tamaki H., Harada Y., Kuno M. and Nakanishi S. (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329, 836838.
  • Missale C., Nash S. R., Robinson S. W., Jaber M. and Caron M. G. (1998) Dopamine receptors: from structure to function. Physiol. Rev. 78, 189225.
  • Moret F., Guilland J. C., Coudouel S., Rochette L. and Vernier P. (2004) Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates. J. Comp. Neurol. 468, 135150.
  • Mustard J. A., Beggs K. T. and Mercer A. R. (2005) Molecular biology of the invertebrate dopamine receptors. Arch. Insect Biochem. Physiol. 59, 103117.
  • Nasman J., Kukkonen J. P. and Akerman K. E. (2002) Dual signalling by different octopamine receptors converges on adenylate cyclase in Sf9 cells. Insect Biochem. Mol. Biol. 32, 285293.
  • Neve K. A., Seamans J. K. and Trantham-Davidson H. (2004) Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 24, 165205.
  • O’Boyle K. M., Gaitanopoulos D. E., Brenner M. and Waddington J. L. (1989) Agonist and antagonist properties of benzazepine and thienopyridine derivatives at the D1 dopamine receptor. Neuropharmacology 28, 401405.
  • Olsson R., Yulis R. and Rodriguez E. M. (1994) The infundibular organ of the lancelet (Branchiostoma lanceolatum, Acrania): an immunocytochemical study. Cell Tissue Res. 277, 107114.
  • Pedersen U. B., Norby B., Jensen A. A., Schiodt M., Hansen A., Suhr-Jessen P., Scheideler M., Thastrup O. and Andersen P. H. (1994) Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor. Eur. J. Pharmacol. 267, 8593.
  • Putnam N. H., Butts T., Ferrier D. E. et al. (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 10641071.
  • Rang H. P., Dale M. M. and Ritter J. M. (1999) Pharmacology, 4th edn. Churchill Livingstone, Edinburgh.
  • Reale V., Hannan F., Hall L. M. and Evans P. D. (1997) Agonist-specific coupling of a cloned Drosophila melanogaster D1-like dopamine receptor to multiple second messenger pathways by synthetic agonists. J. Neurosci. 17, 65456553.
  • Robb S., Cheek T. R., Hannan F. L., Hall L. M., Midgley J. M. and Evans P. D. (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J. 13, 13251330.
  • Rogers C., Reale V., Kim K., Chatwin H., Li C., Evans P. and De Bono M. (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat. Neurosci. 6, 11781185.
  • Schmitt J. M. and Stork P. J. (2002) PKA phosphorylation of Src mediates cAMP’s inhibition of cell growth via Rap1. Mol. Cell 9, 8594.
  • Seabrook G. R., McAllister G., Knowles M. R., Myers J., Sinclair H., Patel S., Freedman S. B. and Kemp J. A. (1994) Depression of high-threshold calcium currents by activation of human D2 (short) dopamine receptors expressed in differentiated NG108-15 cells. Br. J. Pharmacol. 111, 10611066.
  • Srivastava D. P., Yu E. J., Kennedy K., Chatwin H., Reale V., Hamon M., Smith T. and Evans P. D. (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J. Neurosci. 25, 61456155.
  • Suo S., Sasagawa N. and Ishiura S. (2002) Identification of a dopamine receptor from Caenorhabditis elegans. Neurosci. Lett. 319, 1316.
  • Surmeier D. J., Bargas J., Hemmings H. C. Jr, Nairn A. C. and Greengard P. (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14, 385397.
  • Swatton J. E., Sellers L. A., Faull R. L., Holland A., Iritani S. and Bahn S. (2004) Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur. J. Neurosci. 19, 27112719.
  • Tang L., Todd R. D., Heller A. and O’Malley K. L. (1994) Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J. Pharmacol. Exp. Ther. 268, 495502.
  • Van Renterghem C., Bilbe G., Moss S., Smart T. G., Constanti A., Brown D. A. and Barnard E. A. (1987) GABA receptors induced in Xenopus oocytes by chick brain mRNA: evaluation of TBPS as a use-dependent channel-blocker. Brain Res. 388, 2131.
  • Vincent J. D., Cardinaud B. and Vernier P. (1998) Evolution of monoamine receptors and the origin of motivational and emotional systems in vertebrates. Bull. Acad. Natl Med. 182, 15051516.
  • Wang C., Buck D. C., Yang R., Macey T. A. and Neve K. A. (2005) Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J. Neurochem. 93, 899909.
  • Weitl N. and Seifert R. (2008) Distinct interactions of human beta1- and beta2-adrenoceptors with isoproterenol, epinephrine, norepinephrine, and dopamine. J. Pharmacol. Exp. Ther. 327, 760769.
  • Wess J., Han S. J., Kim S. K., Jacobson K. A. and Li J. H. (2008) Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol. Sci. 29, 616625.
  • Williams P. J., MacVicar B. A. and Pittman Q. J. (1989) A dopaminergic inhibitory postsynaptic potential mediated by an increased potassium conductance. Neuroscience 31, 673681.
  • Xhaard H., Rantanen V. V., Nyrönen T. and Johnson M. S. (2006) Molecular evolution of adrenoceptors and dopamine receptors: implications for the binding of catecholamines. J. Med. Chem. 49, 17061719.
  • Zhen X., Zhang J., Johnson G. P. and Friedman E. (2001) D(4) dopamine receptor differentially regulates Akt/nuclear factor-kappa b and extracellular signal-regulated kinase pathways in D(4)MN9D cells. Mol. Pharmacol. 60, 857864.