SEARCH

SEARCH BY CITATION

References

  • Adams J. D. Jr and Klaidman L. K. (1993) Acrolein-induced oxygen radical formation. Free Radic. Biol. Med. 15, 187193.
  • Baptiste D. C. and Fehlings M. (2006) Pharmacological Approaches To Repair the Injured Spinal Cord. J. Neurotrauma 23, 318334.
  • Bracken M. B. (2002) Steroids for acute spinal cord injury. Cochrane Database Syst. Rev. CD001046.
  • Bracken M. B. and Holford T. R. (2002) Neurological and functional status 1 year after acute spinal cord injury: estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J. Neurosurg. 96, 259266.
  • Bracken M. B., Shepard M. J., Holford T. R. et al. (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277, 15971604.
  • Bracken M. B., Shepard M. J., Holford T. R. et al. (1998) Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the Third National Acute Spinal Cord Injury randomized controlled trial. J. Neurosurg. 89, 699706.
  • Braughler J. M. and Hall E. D. (1989) Central nervous system trauma and stroke I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic. Biol. Med. 6, 289301.
  • Burcham P. C. (2008) Potentialities and pitfalls accompanying chemico-pharmacological strategies against endogenous electrophiles and carbonyl stress. Chem. Res. Toxicol. 21, 779786.
  • Burcham P. C. and Pyke S. M. (2006) Hydralazine inhibits rapid acrolein-induced protein oligomerization: role of aldehyde scavenging and adduct trapping in cross-link blocking and cytoprotection. Mol. Pharmacol. 69, 10561065.
  • Burcham P. C., Kerr P. G. and Fontaine F. (2000) The antihypertensive hydralazine is an efficient scavenger of acrolein. Redox. Rep. 5, 4749.
  • Burcham P. C., Kaminskas L. M., Fontaine F. R., Petersen D. R. and Pyke S. M. (2002) Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products. Toxicology 181–182, 229236.
  • Burcham P. C., Fontaine F. R., Kaminskas L. M., Petersen D. R. and Pyke S. M. (2004) Protein adduct-trapping by hydrazinophthalazine drugs: mechanisms of cytoprotection against acrolein-mediated toxicity. Mol. Pharmacol. 65, 655664.
  • Cai J., Bhatnagar A. and Pierce W. M. (2009) Protein modification by acrolein: formation and stability of cysteine adducts. Chem. Res. Toxicol. 22, 708716.
  • Calingasan N. Y., Uchida K. and Gibson G. E. (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J. Neurochem. 72, 751756.
  • Cohen S. M., Garland E. M., St John M., Okamura T. and Smith R. A. (1992) Acrolein initiates rat urinary bladder carcinogenesis. Cancer Res. 52, 35773581.
  • Cooper A. J., Pulsinelli W. A. and Duffy T. E. (1980) Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J. Neurochem. 35, 12421245.
  • Eiserich J. P., Van Der Vliet A., Handelman G. J., Halliwell B. and Cross C. E. (1995) Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am. J. Clin. Nutr. 62, 1490S1500S.
  • Esterbauer H., Schaur R. J. and Zollner H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81128.
  • Fehlings M. and Baptiste D. C. (2005) Current status of clinical trials for acute spinal cord injury. Injury 36(Suppl 2), B113B122.
  • Feng Z., Hu W., Hu Y. and Tang M. S. (2006) Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc. Natl Acad. Sci. USA 103, 1540415409.
  • Feron V. J., Til H. P., De Vrijer F., Woutersen R. A., Cassee F. R. and Van Bladeren P. J. (1991) Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat. Res. 259, 363385.
  • George E. R., Scholten D. J., Buechler C. M., Jordan-Tibbs J., Mattice C. and Albrechts R. M. (1995) Failure of methylprednisolone to improve the outcome of spinal cord injuries. American Surgeon 61, 659663.
  • Ghilarducci D. P. and Tjeerdema R. S. (1995) Fate and effects of acrolein. Rev. Environ. Contam. Toxicol. 144, 95146.
  • Hall E. D. (1989) Free radicals and CNS injury. Crit. Care Clin. 5, 793805.
  • Hall E. D. (1991) Inhibition of lipid peroxidation in CNS trauma. J. Neurotrauma 8, S31S40; discussion S41.
  • Hall E. D. (1996) Lipid peroxidation. Adv. Neurol. 71, 247257; discussion 247–258.
  • Hall E. D. and Braughler J. M. (1993) Free radicals in CNS injury. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 71, 81105.
  • Hall E. D. and Springer J. E. (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1, 80100.
  • Halliwell B. and Gutteridge J. M. C. (1999) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.
  • Hamann K., Durkes A., Ouyang H., Uchida K., Pond A. and Shi R. (2008a) Critical role of acrolein in secondary injury following ex vivo spinal cord trauma. J. Neurochem. 107, 712721.
  • Hamann K., Nehrt G., Ouyang H., Deurstock B. and Shi R. (2008b) Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J. Neurochem. 104, 709718.
  • Horton N. D., Biswal S. S., Corrigan L. L., Bratta J. and Kehrer J. P. (1999) Acrolein causes inhibitor κB-independent decreases in nuclear factor kappa B activation in human lung adenocarcinoma (A549) cells. J. Biol. Chem. 247, 92009206.
  • Juurlink B. H. and Paterson P. G. (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J. Spinal Cord Med. 21, 309334.
  • Kaminskas L. M., Pyke S. M. and Burcham P. C. (2004a) Reactivity of hydrazinophthalazine drugs with the lipid peroxidation products acrolein and crotonaldehyde. Org. Biomol. Chem. 2, 25782584.
  • Kaminskas L. M., Pyke S. M. and Burcham P. C. (2004b) Strong protein adduct trapping accompanies abolition of acrolein-mediated hepatotoxicity by hydralazine in mice. J. Pharmacol. Exp. Ther. 310, 10031010.
  • Kehrer J. P. and Biswal S. S. (2000) The molecular effects of acrolein. Toxicol. Sci. 57, 615.
  • Kumar V., Abbas A. K. and Fausto N. (2004) Robbins & Cotran Pathologic Basis of Disease. Elsevier, Philadelphia.
  • Kwak M., Kensler T. W. and Casero R. A. Jr (2003) Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein. Biochem. Biophys. Res. Commun. 305, 662670.
  • Lee H. C., Cho D. Y., Lee W. Y. and Chuang H. C. (2007) Pitfalls in treatment of acute cervical spinal cord injury using high-dose methylprednisolone: a retrospect audit of 111 patients. Surg. Neurol. 68, S37S41.
  • Liu-Snyder P., Borgens R. B. and Shi R. (2006a) Hydralazine rescues PC12 cells from acrolein-mediated death. J. Neurosci. Res. 84, 219227.
  • Liu-Snyder P., McNally H., Shi R. and Borgens R. B. (2006b) Acrolein-mediated mechanisms of neuronal death. J. Neurosci. Res. 84, 209218.
  • Logan M. P., Parker S. and Shi R. (2005) Glutathione and ascorbic acid enhance recovery of Guinea pig spinal cord white matter following ischemia and acrolein exposure. Pathobiology 72, 171178.
  • Lovell M. A., Xie C. and Markesbery W. R. (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol. Aging 22, 187194.
  • Lucas J. H., Wheeler D. G., Guan Z., Suntres Z. and Stokes B. T. (2002) Effect of glutathione augmentation on lipid peroxidation after spinal cord injury. J. Neurotrauma 19, 763775.
  • Luo J. and Shi R. (2004) Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissue. Neurochem. Int. 44, 475486.
  • Luo J. and Shi R. (2005) Acrolein induces oxidative stress in brain mitochondria. Neurochem. Int. 46, 243252.
  • Luo J., Robinson J. P. and Shi R. (2005a) Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress. Neurochem. Int. 47, 449457.
  • Luo J., Uchida K. and Shi R. (2005b) Accumulation of acrolein-protein adducts after traumatic spinal cord injury. Neurochem. Res. 30, 291295.
  • Matsumoto T., Tamaki T., Kawakami M., Yoshida M., Ando H. and Yamada H. (2001) Early complications of high-dose methylprednisolone sodium succinate treatment in the follow-up of acute cervical spinal cord injury. Spine 26, 426430.
  • Mitchell D. Y. and Petersen D. R. (1989) Metabolism of the Glutathione-Acrolein Adduct, S-(2-AldehydoEthyl)glutathione, by Rat Liver Alcohol and Aldehyde Dehydrogenase. J. Pharmacol. Exp. Ther. 251, 193198.
  • O’Brien P. J., Siraki A. G. and Shangari N. (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 35, 609662.
  • Parodi S., De Flora S., Cavanna M., Pina A., Robbiano L., Bennicelli C. and Brambilla G. (1981) DNA-damaging activity in vivo and bacterial mutagenicity of sixteen hydrazine derivatives as related quantitatively to their carcinogenicity. Cancer Res. 41, 14691482.
  • Picklo M. J. and Montine T. J. (2001) Acrolein inhibits respiration in isolated brain mitochondria. Biochim. Biophys. Acta 1535, 145152.
  • Pocernich C. B., Cardin A. L., Racine C. L., Lauderback C. M. and Butterfield D. A. (2001) Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem. Int. 39, 141149.
  • Reece P. A. (1981) Hydralazine and related compounds: chemistry, metabolism, and mode of action. Med. Res. Rev. 1, 7396.
  • Runge-Morris M., Wu N. and Novak R. F. (1994) Hydrazine-mediated DNA damage: role of hemoprotein, electron transport, and organic free radicals. Toxicol. Appl. Pharmacol. 125, 123132.
  • Sakata K., Kashiwagi K., Sharmin S., Ueda S., Irie Y., Murotani N. and Igarashi K. (2003) Increase in putrescine, amine oxidase, and acrolein in plasma of renal failure patients. Biochem. Biophys. Res. Commun. 305, 143149.
  • Seiler N. (2000) Oxidation of polyamines and brain injury. Neurochem. Res. 25, 471490.
  • Shamoto-Nagai M., Maruyama W., Hashizume Y., Yoshida M., Osawa T., Riederer P. and Naoi M. (2007) In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proeasome activity. J. Neural. Transm. 114, 15591567.
  • Shi R. (2004) The dynamics of axolemmal disruption in guinea pig spinal cord following compression. J. Neurocytol. 33, 203211.
  • Shi R. and Blight A. R. (1996) Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. J. Neurophysiol. 76, 15721580.
  • Shi R. and Luo L. (2006) The role of acrolein in spinal cord injury. Appl. Neurol. 2, 2227.
  • Shi R. and Whitebone J. (2006) Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. J. Neurophysiol. 95, 33843390.
  • Shi R., Asano T., Vining N. C. and Blight A. R. (2000) Control of membrane sealing in injured mammalian spinal cord axons. J. Neurophysiol. 84, 17631769.
  • Shi R., Luo J. and Peasley M. A. (2002) Acrolein inflicts axonal membrane disruption and conduction loss in isolated guinea pig spinal cord. Neuroscience 115, 337340.
  • Stys P. K., Waxman S. G. and Ransom B. R. (1991) Na+-Ca2+ exchange mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Ann. Neurol. 30, 375380.
  • Suberviola B., González-Castro A., Llorca J., Ortiz-Melón F. and Miñambres E. (2008) Early complications of high-dose methylprednisolone in acute spinal cord injury patients. Injury 39, 748752.
  • Tator C. H. (2006) Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59, 957982.
  • Thompson C. A. and Burcham P. C. (2008) Genome-wide transcriptional responses to acrolein. Chem. Res. Toxicol. 21, 22452256.
  • Uchida K. (1999) Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc. Med. 9, 109113.
  • Uchida K., Kanematsu M., Morimitsu Y., Osawa T., Noguchi N. and Niki E. (1998a) Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 273, 1605816066.
  • Uchida K., Kanematsu M., Sakai K. et al. (1998b) Protein-bound acrolein: potential markers for oxidative stress. Proc. Natl Acad. Sci. USA 95, 48824887.
  • Valacchi G., Gapnin E., Phung A., Nardini M., Schock B. C., Cross C. E. and Van der Vliet A. (2005) Inhibition of NFκB activation and IL-8 expression in human bronchial epithelial cells by acrolein. Antioxid. Redox Signal. 7, 2531.
  • Weglarz L. and Bartosz G. (1991) Hydralazine stimulates production of oxygen free radicals in Eagle’s medium and cultured fibroblasts. Free Radic. Biol. Med. 11, 149155.
  • Williams G. M., Mazue G., McQueen C. A. and Shimada T. (1980) Genotoxicity of the antihypertensive drugs hydralazine and dihydralazine. Science 210, 329330.
  • Witz G. (1989) Biological interactions of alpha,beta-unsaturated aldehydes. Free Radic. Biol. Med. 7, 333349.
  • Wood P. L., Khan M. A., Moskal J. R., Todd K. G., Tanay V. A. and Baker G. (2006) Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res. 1122, 184190.
  • Xiong Y., Rabchevsky A. G. and Hall E. D. (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J. Neurochem. 100, 639649.
  • Young W. (1993) Secondary injury mechanisms in acute spinal cord injury. J. Emergency Med. 11, 1322.