SEARCH

SEARCH BY CITATION

References

  • Aaronson R. M., Graven K. K., Tucci M., McDonald R. J. and Farber H. W. (1995) Non-neuronal enolase is an endothelial hypoxic stress protein. J. Biol. Chem. 270, 2775227757.
  • Aksenov M. Y., Aksenova M. V., Butterfield D. A., Geddes J. W. and Markesbery W. R. (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103, 373383.
  • Andrade-Gordon P. and Strickland S. (1986) Interaction of heparin with plasminogen activators and plasminogen: effects on the activation of plasminogen. Biochemistry 25, 40334040.
  • Apostol B. L., Illes K., Pallos J. et al. (2006) Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum. Mol. Genet. 15, 273285.
  • Bader Lange M. L., Cenini G., Piroddi M., Abdul H. M., Sultana R., Galli F., Memo M. and Butterfield D. A. (2008) Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol. Dis. 29, 456464.
  • Baranes D., Lederfein D., Huang Y. Y., Chen M., Bailey C. H. and Kandel E. R. (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813825.
  • Beal M. F. (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357366.
  • Beal M. F. (2008) The urokinase system of plasminogen activator plays a role in amyotrophic lateral sclerosis (ALS) pathogenesis. Exp. Neurol. 211, 332333.
  • Bentley D. L. and Groudine M. (1986) A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321, 702706.
  • Berding G., Odin P., Brooks D. J. et al. (2001) Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET. Mov. Disord. 16, 10141022.
  • Bergman A. C., Linder C., Sakaguchi K. et al. (1997) Increased expression of α-enolase in c-jun transformed rat fibroblasts without increased activation of plasminogen. FEBS Lett. 417, 1720.
  • Blasi F., Vassalli J. D. and Dano K. (1987) Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J. Cell Biol. 104, 801804.
  • Borth W. (1992) α2-Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 6, 33453353.
  • Bottalico L. A., Kendrick N. C., Keller A., Li Y. and Tabas I. (1993) Cholesteryl ester loading of mouse peritoneal macrophages is associated with changes in the expression or modification of specific cellular proteins, including increase in an α-enolase isoform. Arterioscler. Thromb. 13, 264275.
  • Boyd-Kimball D., Castegna A., Sultana R., Poon H. F., Petroze R., Lynn B. C., Klein J. B. and Butterfield D. A. (2005) Proteomic identification of proteins oxidized by Aβ(1-42) in synaptosomes: implications for Alzheimer’s disease. Brain Res. 1044, 206215.
  • Briggs M. R., Kadonaga J. T., Bell S. P. and Tjian R. (1986) Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science 234, 4752.
  • Brorson J. R., Schumacker P. T. and Zhang H. (1999) Nitric oxide acutely inhibits neuronal energy production. The Committees on Neurobiology and Cell Physiology. J. Neurosci. 19, 147158.
  • Brunner D., Ducker K., Oellers N., Hafen E., Scholz H. and Klambt C. (1994) The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370, 386389.
  • Bu G., Williams S., Strickland D. K. and Schwartz A. L. (1992) Low density lipoprotein receptor-related protein/α2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc. Natl Acad. Sci. USA 89, 74277431.
  • Bulliard C., Zurbriggen R., Tornare J., Faty M., Dastoor Z. and Dreyer J. L. (1997) Purification of a dichlorophenol-indophenol oxidoreductase from rat and bovine synaptic membranes: tight complex association of a glyceraldehyde-3-phosphate dehydrogenase isoform, TOAD64, enolase-γ and aldolase C. Biochem. J. 324 (Pt 2), 555563.
  • Butterfield D. A. (2002) Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic. Res. 36, 13071313.
  • Butterfield D. A. and Lauderback C. M. (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 32, 10501060.
  • Butterfield D. A. and Stadtman E. R. (1997) Protein oxidation processes in aging brain. Adv. Cell. Aging Gerontol. 2, 161191.
  • Butterfield D. A. and Sultana R. (2007) Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J. Alzheimers Dis. 12, 6172.
  • Butterfield D. A., Drake J., Pocernich C. and Castegna A. (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol. Med. 7, 548554.
  • Butterfield D. A., Castegna A., Lauderback C. M. and Drake J. (2002) Evidence that amyloid β-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging 23, 655664.
  • Butterfield D. A., Gnjec A., Poon H. F., Castegna A., Pierce W. M., Klein J. B. and Martins R. N. (2006a) Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J. Alzheimers Dis. 10, 391397.
  • Butterfield D. A., Poon H. F., St Clair D., Keller J. N., Pierce W. M., Klein J. B. and Markesbery W. R. (2006b) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol. Dis. 22, 223232.
  • Butterfield D. A., Reed T., Newman S. F. and Sultana R. (2007) Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic. Biol. Med. 43, 658677.
  • Buxbaum J. D., Liu K. N., Luo Y. et al. (1998) Evidence that tumor necrosis factor-α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 2776527767.
  • Cacquevel M., Launay S., Castel H. et al. (2007) Ageing and amyloid-β peptide deposition contribute to an impaired brain tissue plasminogen activator activity by different mechanisms. Neurobiol. Dis. 27, 164173.
  • Carmeliet P., Schoonjans L., Kieckens L. et al. (1994) Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368, 419424.
  • Casoni F., Basso M., Massignan T., Gianazza E., Cheroni C., Salmona M., Bendotti C. and Bonetto V. (2005) Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J. Biol. Chem. 280, 1629516304.
  • Cassarino D. S., Halvorsen E. M., Swerdlow R. H., Abramova N. N., Parker W. D. Jr, Sturgill T. W. and Bennett J. P. Jr (2000) Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-κB in cellular models of Parkinson’s disease. J. Neurochem. 74, 13841392.
  • Castegna A., Aksenov M., Thongboonkerd V., Klein J. B., Pierce W. M., Booze R., Markesbery W. R. and Butterfield D. A. (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem. 82, 15241532.
  • Castegna A., Thongboonkerd V., Klein J. B., Lynn B., Markesbery W. R. and Butterfield D. A. (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem. 85, 13941401.
  • Cesarman G. M., Guevara C. A. and Hajjar K. A. (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator (tPA). II. Annexin II-mediated enhancement of tPA-dependent plasminogen activation. J. Biol. Chem. 269, 2119821203.
  • Chang L. and Karin M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 3740.
  • Chaudhary D. and Miller D. M. (1995) The c-myc promoter binding protein (MBP-1) and TBP bind simultaneously in the minor groove of the c-myc P2 promoter. Biochemistry 34, 34383445.
  • Chen Z. L. and Strickland S. (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917925.
  • Cheng M., Wang D. and Roussel M. F. (1999) Expression of c-myc in response to colony-stimulating factor-1 requires mitogen-activated protein kinase kinase-1. J. Biol. Chem. 274, 65536558.
  • Chu C. T., Levinthal D. J., Kulich S. M., Chalovich E. M. and DeFranco D. B. (2004) Oxidative neuronal injury. The dark side of ERK1/2. Eur. J. Biochem. 271, 20602066.
  • Chuang S. M., Liou G. Y. and Yang J. L. (2000) Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 21, 14911500.
  • Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A. Y., Seubert P., Vigo-Pelfrey C., Lieberburg I. and Selkoe D. J. (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360, 672674.
  • Collen D. (1999) The plasminogen (fibrinolytic) system. Thromb. Haemost. 82, 259270.
  • Conboy L., Murphy K. J. and Regan C. M. (2005) Amyloid precursor protein expression in the rat hippocampal dentate gyrus modulates during memory consolidation. J. Neurochem. 95, 16771688.
  • Conde de la Rosa L., Schoemaker M. H., Vrenken T. E., Buist-Homan M., Havinga R., Jansen P. L. and Moshage H. (2006) Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J. Hepatol. 44, 918929.
  • Cooper J. A., Esch F. S., Taylor S. S. and Hunter T. (1984) Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine kinases in vivo and in vitro. J. Biol. Chem. 259, 78357841.
  • Dang C. V. (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 111.
  • Davis R. J. (1993) The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 1455314556.
  • De Iuliis A., Grigoletto J., Recchia A., Giusti P. and Arslan P. (2005) A proteomic approach in the study of an animal model of Parkinson’s disease. Clin. Chim. Acta 357, 202209.
  • De Sousa L. P., Brasil B. S., Silva B. M., Freitas M. H., Nogueira S. V., Ferreira P. C., Kroon E. G. and Bonjardim C. A. (2005) Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway. Biochem. Biophys. Res. Commun. 329, 237245.
  • Demestre M., Howard R. S., Orrell R. W. and Pullen A. H. (2006) Serine proteases purified from sera of patients with amyotrophic lateral sclerosis (ALS) induce contrasting cytopathology in murine motoneurones to IgG. Neuropathol. Appl. Neurobiol. 32, 141156.
  • Dotti C. G., Galvan C. and Ledesma M. D. (2004) Plasmin deficiency in Alzheimer’s disease brains: causal or casual? Neurodegener. Dis. 1, 205212.
  • Duda J. E., Giasson B. I., Chen Q. et al. (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am. J. Pathol. 157, 14391445.
  • Evan G. I., Wyllie A. H., Gilbert C. S., Littlewood T. D., Land H., Brooks M., Waters C. M., Penn L. Z. and Hancock D. C. (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119128.
  • Feo S., Arcuri D., Piddini E., Passantino R. and Giallongo A. (2000) ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 473, 4752.
  • Fernandez-Monreal M., Lopez-Atalaya J. P., Benchenane K. et al. (2004a) Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J. Biol. Chem. 279, 5085050856.
  • Fernandez-Monreal M., Lopez-Atalaya J. P., Benchenane K. et al. (2004b) Is tissue-type plasminogen activator a neuromodulator? Mol. Cell. Neurosci. 25, 594601.
  • Ferrer I. and Blanco R. (2000) n-Myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res. Mol. Brain Res. 77, 270276.
  • Ferrer I., Blanco R., Carmona M. and Puig B. (2001a) Phosphorylated c-myc expression in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Neuropathol. Appl. Neurobiol. 27, 343351.
  • Ferrer I., Blanco R., Carmona M., Puig B., Barrachina M., Gomez C. and Ambrosio S. (2001b) Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and Dementia with Lewy bodies. J. Neural Transm. 108, 13831396.
  • Ferrer I., Blanco R., Carmona M. et al. (2001c) Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. 11, 144158.
  • Fuhrmann G. F., Fehlau R., Schneider H. and Knauf P. A. (1989) The effect of ferricyanide with iodoacetate in calcium-free solution on passive cation permeability in human red blood cells: comparison with the Gardos-effect and with the influence of PCMBS on passive cation permeability. Biochim. Biophys. Acta 983, 179185.
  • Giallongo A., Feo S., Moore R., Croce C. M. and Showe L. C. (1986) Molecular cloning and nucleotide sequence of a full-length cDNA for human α-enolase. Proc. Natl Acad. Sci. USA 83, 67416745.
  • Giallongo A., Oliva D., Cali L., Barba G., Barbieri G. and Feo S. (1990) Structure of the human gene for α-enolase. Eur. J. Biochem. 190, 567573.
  • Al-Giery A. G. and Brewer J. M. (1992) Characterization of the interaction of yeast enolase with polynucleotides. Biochim. Biophys. Acta 1159, 134140.
  • Gils A. and Declerck P. J. (1997) Proteinase specificity and functional diversity in point mutants of plasminogen activator inhibitor 1. J. Biol. Chem. 272, 1266212666.
  • Glas M., Popp B., Angele B., Koedel U., Chahli C., Schmalix W. A., Anneser J. M., Pfister H. W. and Lorenzl S. (2007) A role for the urokinase-type plasminogen activator system in amyotrophic lateral sclerosis. Exp. Neurol. 207, 350356.
  • Gomez A. and Ferrer I. (2009) Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J. Neurosci. Res. 87, 10021013.
  • Grayson D. R., Costa R. H., Xanthopoulos K. G. and Darnell J. E. (1988) One factor recognizes the liver-specific enhancers in α1-antitrypsin and transthyretin genes. Science 239, 786788.
  • Gualandris A., Jones T. E., Strickland S. and Tsirka S. E. (1996) Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J. Neurosci. 16, 22202225.
  • Gupta S., Seth A. and Davis R. J. (1993) Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc. Natl Acad. Sci. USA 90, 32163220.
  • Hajjar K. A., Jacovina A. T. and Chacko J. (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J. Biol. Chem. 269, 2119121197.
  • Hattori T., Ohsawa K., Mizuno Y., Kato K. and Kohsaka S. (1994) Synthetic peptide corresponding to 30 amino acids of the C-terminal of neuron-specific enolase promotes survival of neocortical neurons in culture. Biochem. Biophys. Res. Commun. 202, 2530.
  • Hattori T., Takei N., Mizuno Y., Kato K. and Kohsaka S. (1995) Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neurosci. Res. 21, 191198.
  • Von Heijne G., Liljestrom P., Mikus P., Andersson H. and Ny T. (1991) The efficiency of the uncleaved secretion signal in the plasminogen activator inhibitor type 2 protein can be enhanced by point mutations that increase its hydrophobicity. J. Biol. Chem. 266, 1524015243.
  • Holland J. P., Labieniec L., Swimmer C. and Holland M. J. (1983) Homologous nucleotide sequences at the 5′ termini of messenger RNAs synthesized from the yeast enolase and glyceraldehyde-3-phosphate dehydrogenase gene families. The primary structure of a third yeast glyceraldehyde-3-phosphate dehydrogenase gene. J. Biol. Chem. 258, 52915299.
  • Hurlin P. J. and Dezfouli S. (2004) Functions of Myc:Max in the control of cell proliferation and tumorigenesis. Int. Rev. Cytol. 238, 183226.
  • Hyman B. T., Tanzi R. E., Marzloff K., Barbour R. and Schenk D. (1992) Kunitz protease inhibitor-containing amyloid-β protein precursor immunoreactivity in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 51, 7683.
  • Hyman B. T., Elvhage T. E. and Reiter J. (1994) Extracellular signal regulated kinases. Localization of protein and mRNA in the human hippocampal formation in Alzheimer’s disease. Am. J. Pathol. 144, 565572.
  • Iida H. and Yahara I. (1985) Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature 315, 688690.
  • Iyer N. V., Kotch L. E., Agani F. et al. (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149162.
  • Jenner P. and Olanow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, S72S84.
  • Jimenez L. A., Zanella C., Fung H., Janssen Y. M., Vacek P., Charland C., Goldberg J. and Mossman B. T. (1997) Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am. J. Physiol. 273, L1029L1035.
  • Jones N. C., Rigby P. W. and Ziff E. B. (1988) Trans-acting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes Dev. 2, 267281.
  • Kahlert S. and Reiser G. (2000) Requirement of glycolytic and mitochondrial energy supply for loading of Ca2+ stores and InsP(3)-mediated Ca2+ signaling in rat hippocampus astrocytes. J. Neurosci. Res. 61, 409420.
  • Kalderon N. (1979) Migration of Schwann cells and wrapping of neurites in vitro: a function of protease activity (plasmin) in the growth medium. Proc. Natl Acad. Sci. USA 76, 59925996.
  • Kalderon N. (1982) Role of the plasmin-generating system in the developing nervous tissue: I. Proteolysis as a mitogenic signal for the glial cells. J. Neurosci. Res. 8, 509519.
  • Kandel E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 10301038.
  • Karin M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 1648316486.
  • Karin M. (1998) Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. NY Acad. Sci. 851, 139146.
  • Karp G. (2003) Cell and Molecular Biology. Concepts and Experiments. John Wiley & Sons, Inc., New York, NY, USA.
  • Kauppinen R. A., Enkvist K., Holopainen I. and Akerman K. E. (1988) Glucose deprivation depolarizes plasma membrane of cultured astrocytes and collapses transmembrane potassium and glutamate gradients. Neuroscience 26, 283289.
  • Keller J. N., Schmitt F. A., Scheff S. W., Ding Q., Chen Q., Butterfield D. A. and Markesbery W. R. (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64, 11521156.
  • Kim J. W. and Dang C. V. (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 30, 142150.
  • Kingston I. B., Castro M. J. and Anderson S. (1995) In vitro stimulation of tissue-type plasminogen activator by Alzheimer amyloid β-peptide analogues. Nat. Med. 1, 138142.
  • Kishida K. T., Pao M., Holland S. M. and Klann E. (2005) NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J. Neurochem. 94, 299306.
  • Kitaguchi N., Tokushima Y., Oishi K., Takahashi Y., Shiojiri S., Nakamura S., Tanaka S., Kodaira R. and Ito H. (1990) Determination of amyloid beta protein precursors harboring active form of proteinase inhibitor domains in cerebrospinal fluid of Alzheimer’s disease patients by trypsin-antibody sandwich ELISA. Biochem. Biophys. Res. Commun. 166, 14531459.
  • Kleiner D. E. Jr and Stetler-Stevenson W. G. (1993) Structural biochemistry and activation of matrix metalloproteases. Curr. Opin. Cell Biol. 5, 891897.
  • Knauer M. F., Orlando R. A. and Glabe C. G. (1996) Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP). Brain Res. 740, 614.
  • Konakova M., Hucho F. and Schleuning W. D. (1998) Downstream targets of urokinase-type plasminogen-activator-mediated signal transduction. Eur. J. Biochem. 253, 421429.
  • Konduri S. D., Rao C. N., Chandrasekar N. et al. (2001) A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion. Oncogene 20, 69386945.
  • Kounnas M. Z., Moir R. D., Rebeck G. W., Bush A. I., Argraves W. S., Tanzi R. E., Hyman B. T. and Strickland D. K. (1995) LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation. Cell 82, 331340.
  • Kovacs D. M. (2000) α2-Macroglobulin in late-onset Alzheimer’s disease. Exp. Gerontol. 35, 473479.
  • Kozak M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187208.
  • Kranenburg O., Bouma B., Kroon-Batenburg L. M., Reijerkerk A., Wu Y. P., Voest E. E. and Gebbink M. F. (2002) Tissue-type plasminogen activator is a multiligand cross-β structure receptor. Curr. Biol. 12, 18331839.
  • Kulich S. M., Horbinski C., Patel M. and Chu C. T. (2007) 6-Hydroxydopamine induces mitochondrial ERK activation. Free Radic. Biol. Med. 43, 372383.
  • Lammich S., Kojro E., Postina R., Gilbert S., Pfeiffer R., Jasionowski M., Haass C. and Fahrenholz F. (1999) Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl Acad. Sci. USA 96, 39223927.
  • Ledesma M. D., Da Silva J. S., Crassaerts K., Delacourte A., De Strooper B. and Dotti C. G. (2000) Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer’s disease brains. EMBO Rep. 1, 530535.
  • Lewis T. S., Hunt J. B., Aveline L. D., Jonscher K. R., Louie D. F., Yeh J. M., Nahreini T. S., Resing K. A. and Ahn N. G. (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell 6, 13431354.
  • Liotta L. A., Goldfarb R. H., Brundage R., Siegal G. P., Terranova V. and Garbisa S. (1981) Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 41, 46294636.
  • Lottenberg R., Broder C. C., Boyle M. D., Kain S. J., Schroeder B. L. and Curtiss R. III (1992) Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J. Bacteriol. 174, 52045210.
  • Lovell M. A. and Markesbery W. R. (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J. Neurosci. Res. 85, 30363040.
  • Madani R., Hulo S., Toni N., Madani H., Steimer T., Muller D. and Vassalli J. D. (1999) Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18, 30073012.
  • Mahdi F., Van Nostrand W. E. and Schmaier A. H. (1995) Protease nexin-2/amyloid β-protein precursor inhibits factor Xa in the prothrombinase complex. J. Biol. Chem. 270, 2346823474.
  • Marcu K. B., Bossone S. A. and Patel A. J. (1992) Myc function and regulation. Annu. Rev. Biochem. 61, 809860.
  • Markesbery W. R. (1999) The role of oxidative stress in Alzheimer disease. Arch. Neurol. 56, 14491452.
  • Markesbery W. R. and Lovell M. A. (2007) Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch. Neurol. 64, 954956.
  • Markesbery W. R., Kryscio R. J., Lovell M. A. and Morrow J. D. (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann. Neurol. 58, 730735.
  • McCarthy S. A., Chen D., Yang B. S. et al. (1997) Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol. Cell. Biol. 17, 24012412.
  • McNaught K. S. and Jenner P. (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett. 297, 191194.
  • Melchor J. P., Pawlak R. and Strickland S. (2003) The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-β (Aβ) degradation and inhibits Aβ-induced neurodegeneration. J. Neurosci. 23, 88678871.
  • Menendez-Gonzalez M., Perez-Pinera P., Martinez-Rivera M., Calatayud M. T. and Blazquez Menes B. (2005) APP processing and the APP-KPI domain involvement in the amyloid cascade. Neurodegener. Dis. 2, 277283.
  • Mielke R., Schroder R., Fink G. R., Kessler J., Herholz K. and Heiss W. D. (1996) Regional cerebral glucose metabolism and postmortem pathology in Alzheimer’s disease. Acta Neuropathol. 91, 174179.
  • Miles L. A., Dahlberg C. M., Levin E. G. and Plow E. F. (1989) Gangliosides interact directly with plasminogen and urokinase and may mediate binding of these fibrinolytic components to cells. Biochemistry 28, 93379343.
  • Miles L. A., Dahlberg C. M., Plescia J., Felez J., Kato K. and Plow E. F. (1991) Role of cell-surface lysines in plasminogen binding to cells: identification of α-enolase as a candidate plasminogen receptor. Biochemistry 30, 16821691.
  • Minet E., Arnould T., Michel G., Roland I., Mottet D., Raes M., Remacle J. and Michiels C. (2000) ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 468, 5358.
  • Mizukami Y., Iwamatsu A., Aki T. et al. (2004) ERK1/2 regulates intracellular ATP levels through α-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J. Biol. Chem. 279, 5012050131.
  • Moir R. D. and Tanzi R. E. (2005) LRP-mediated clearance of Aβ is inhibited by KPI-containing isoforms of APP. Curr. Alzheimer Res. 2, 269273.
  • Moir R. D., Lynch T., Bush A. I. et al. (1998) Relative increase in Alzheimer’s disease of soluble forms of cerebral Aβ amyloid protein precursor containing the Kunitz protease inhibitory domain. J. Biol. Chem. 273, 50135019.
  • Nagase H., Enghild J. J., Suzuki K. and Salvesen G. (1990) Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry 29, 57835789.
  • Nagata K., Nakajima K., Takemoto N., Saito H. and Kohsaka S. (1992) Microglia-derived plasminogen enhances neurite outgrowth from explant culture of rat brain. Int. J. Dev. Neurosci. 11, 227237.
  • Nagata K., Nakajima K. and Kohsaka S. (1993) Plasminogen promotes the development of rat mesencephalic dopaminergic neurons in vitro. Brain Res. Dev. Brain Res. 75, 3137.
  • Nakagawa H., Hatakeyama S., Ikesue A. and Miyai H. (1991) Generation of interleukin-8 by plasmin from AVLPR-interleukin-8, the human fibroblast-derived neutrophil chemotactic factor. FEBS Lett. 282, 412414.
  • Nakajima K., Takemoto N. and Kohsaka S. (1992a) Retinoic acid enhances the secretion of plasminogen from cultured rat microglia. FEBS Lett. 314, 167170.
  • Nakajima K., Tsuzaki N., Nagata K., Takemoto N. and Kohsaka S. (1992b) Production and secretion of plasminogen in cultured rat brain microglia. FEBS Lett. 308, 179182.
  • Nakajima K., Tsuzaki N., Shimojo M., Hamanoue M. and Kohsaka S. (1992c) Microglia isolated from rat brain secrete a urokinase-type plasminogen activator. Brain Res. 577, 285292.
  • Nakajima K., Hamanoue M., Takemoto N., Hattori T., Kato K. and Kohsaka S. (1994) Plasminogen binds specifically to α-enolase on rat neuronal plasma membrane. J. Neurochem. 63, 20482057.
  • Nelson D. L. and Cox M. M. (2009) Lehninger Principles of Biochemistry. W. H. Freeman & Co., New York, NY.
  • Newman S. F., Sultana R., Perluigi M., Coccia R., Cai J., Pierce W. M., Klein J. B., Turner D. M. and Butterfield D. A. (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J. Neurosci. Res. 85, 15061514.
  • Nicole O., Docagne F., Ali C., Margaill I., Carmeliet P., MacKenzie E. T., Vivien D. and Buisson A. (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 5964.
  • Onyango P., Lubyova B., Gardellin P., Kurzbauer R. and Weith A. (1998) Molecular cloning and expression analysis of five novel genes in chromosome 1p36. Genomics 50, 187198.
  • Osthus R. C., Shim H., Kim S. et al. (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-myc. J. Biol. Chem. 275, 2179721800.
  • Palmert M. R., Podlisny M. B., Golde T. E. et al. (1989a) The beta amyloid protein precursor: mRNAs, membrane-associated forms, and soluble derivatives. Prog. Clin. Biol. Res. 317, 971984.
  • Palmert M. R., Podlisny M. B., Witker D. S., Oltersdorf T., Younkin L. H., Selkoe D. J. and Younkin S. G. (1989b) The β-amyloid protein precursor of Alzheimer disease has soluble derivatives found in human brain and cerebrospinal fluid. Proc. Natl Acad. Sci. USA 86, 63386342.
  • Pancholi V. (2001) Multifunctional α-enolase: its role in diseases. Cell. Mol. Life Sci. 58, 902920.
  • Pancholi V. and Fischetti V. A. (1998) α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic Streptococci. J. Biol. Chem. 273, 1450314515.
  • Pang P. T. and Lu B. (2004) Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res. Rev. 3, 407430.
  • Parnetti L., Palumbo B., Cardinali L., Loreti F., Chionne F., Cecchetti R. and Senin U. (1995) Cerebrospinal fluid neuron-specific enolase in Alzheimer’s disease and vascular dementia. Neurosci. Lett. 183, 4345.
  • Patel S., Sinha A. and Singh M. P. (2007) Identification of differentially expressed proteins in striatum of maneb-and paraquat-induced Parkinson’s disease phenotype in mouse. Neurotoxicol. Teratol. 29, 578585.
  • Perluigi M., Fai Poon H., Hensley K., Pierce W. M., Klein J. B., Calabrese V., De Marco C. and Butterfield D. A. (2005a) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis. Free Radic. Biol. Med. 38, 960968.
  • Perluigi M., Poon H. F., Maragos W., Pierce W. M., Klein J. B., Calabrese V., Cini C., De Marco C. and Butterfield D. A. (2005b) Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol. Cell Proteomics 4, 18491861.
  • Perluigi M., Sultana R., Cenini G., Di Domenico F., Memo M., Pierce W. M., Coccia R. and Butterfield D. A. (2009) Redox proteomics identification of HNE-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin. Appl. 3, 682693.
  • Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G. and Kokmen E. (1999) Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303308.
  • Peterson C. L. and Calame K. (1989) Proteins binding to site C2 (μE3) in the immunoglobulin heavy-chain enhancer exist in multiple oligomeric forms. Mol. Cell. Biol. 9, 776786.
  • Petrak J., Ivanek R., Toman O., Cmejla R., Cmejlova J., Vyoral D., Zivny J. and Vulpe C. D. (2008) Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 8, 17441749.
  • Plow E. F., Felez J. and Miles L. A. (1991) Cellular regulation of fibrinolysis. Thromb. Haemost. 66, 3236.
  • Plow E. F., Herren T., Redlitz A., Miles L. A. and Hoover-Plow J. L. (1995) The cell biology of the plasminogen system. FASEB J. 9, 939945.
  • Ponte P., Gonzalez-DeWhitt P., Schilling J. et al. (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331, 525527.
  • Poon H. F., Frasier M., Shreve N., Calabrese V., Wolozin B. and Butterfield D. A. (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice--a model of familial Parkinson’s disease. Neurobiol. Dis. 18, 492498.
  • Preece P., Virley D. J., Costandi M., Coombes R., Moss S. J., Mudge A. W., Jazin E. and Cairns N. J. (2004) Amyloid precursor protein mRNA levels in Alzheimer’s disease brain. Brain Res. Mol. Brain Res. 122, 19.
  • Qian Z., Gilbert M. E., Colicos M. A., Kandel E. R. and Kuhl D. (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361, 453457.
  • Qiu W. Q., Borth W., Ye Z., Haass C., Teplow D. B. and Selkoe D. J. (1996) Degradation of amyloid β-protein by a serine protease-α2-macroglobulin complex. J. Biol. Chem. 271, 84438451.
  • Ray R. B. (1995) Induction of cell death in murine fibroblasts by a c-myc promoter binding protein. Cell Growth Differ. 6, 10891096.
  • Ray R. and Miller D. M. (1991) Cloning and characterization of a human c-myc promoter-binding protein. Mol. Cell. Biol. 11, 21542161.
  • Rebeck G. W., Harr S. D., Strickland D. K. and Hyman B. T. (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the α2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. Ann. Neurol. 37, 211217.
  • Redlitz A., Fowler B. J., Plow E. F. and Miles L. A. (1995) The role of an enolase-related molecule in plasminogen binding to cells. Eur. J. Biochem. 227, 407415.
  • Reed T., Perluigi M., Sultana R., Pierce W. M., Klein J. B., Turner D. M., Coccia R., Markesbery W. R. and Butterfield D. A. (2008) Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol. Dis. 30, 107120.
  • Reed T. T., Pierce W. M. Jr, Turner D. M., Markesbery W. R. and Butterfield D. A. (2009) Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J. Cell Mol. Med. (in press).
  • Richard D. E., Berra E., Gothie E., Roux D. and Pouyssegur J. (1999) p42/p44 Mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1α (HIF-1α) and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 274, 3263132637.
  • Rifkin D. B., Moscatelli D., Bizik J., Quarto N., Blei F., Dennis P., Flaumenhaft R. and Mignatti P. (1990) Growth factor control of extracellular proteolysis. Cell. Differ. Dev. 32, 313318.
  • Rogove A. D. and Tsirka S. E. (1998) Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr. Biol. 8, 1925.
  • Saito F., Yanagisawa K. and Miyatake T. (1993) Soluble derivatives of β/A4 amyloid protein precursor in human cerebrospinal fluid are both N- and O-glycosylated. Brain Res. Mol. Brain Res. 19, 171174.
  • Sappino A. P., Madani R., Huarte J., Belin D., Kiss J. Z., Wohlwend A. and Vassalli J. D. (1993) Extracellular proteolysis in the adult murine brain. J. Clin. Invest. 92, 679685.
  • Scheuner D., Eckman C., Jensen M. et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin-1 and -2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864870.
  • Schmaier A. H., Dahl L. D., Rozemuller A. J., Roos R. A., Wagner S. L., Chung R. and Van Nostrand W. E. (1993) Protease nexin-2/amyloid-β protein precursor. A tight-binding inhibitor of coagulation factor IXa. J. Clin. Invest. 92, 25402545.
  • Sedoris K. C., Thomas S. D. and Miller D. M. (2007) c-Myc promoter binding protein regulates the cellular response to an altered glucose concentration. Biochemistry 46, 86598668.
  • Semenza G. L., Jiang B. H., Leung S. W., Passantino R., Concordet J. P., Maire P. and Giallongo A. (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 3252932537.
  • Shimokawa M., Nakamura K., Maruyama K., Tagawa K., Miyatake T., Sugita H., Ishiura S. and Suzuki K. (1993) Inhibitory spectra of purified protease nexin-II and related proteins towards cellular proteinases. Biochimie 75, 911915.
  • Siao C. J. and Tsirka S. E. (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J. Neurosci. 22, 33523358.
  • Siegel G. J., Albers R. W., Brady S. T. and Price D. L. (2006) Basic Neurochemistry. Molecular, Cellular and Medical Aspects. Elsivier Academic Press, Burlington, MA, USA.
  • Silver I. A. and Erecinska M. (1997) Energetic demands of the Na+/K+-ATPase in mammalian astrocytes. Glia 21, 3545.
  • Slevin M., Krupinski J., Slowik A., Rubio F., Szczudlik A. and Gaffney J. (2000) Activation of MAP kinase (ERK-1/ERK-2), tyrosine kinase and VEGF in the human brain following acute ischaemic stroke. Neuroreport 11, 27592764.
  • Smith R. P., Higuchi D. A. and Broze G. J. Jr (1990) Platelet coagulation factor XIa-inhibitor, a form of Alzheimer amyloid precursor protein. Science 248, 11261128.
  • Sorolla M. A., Reverter-Branchat G., Tamarit J., Ferrer I., Ros J. and Cabiscol E. (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic. Biol. Med. 45, 667678.
  • Soucek T., Cumming R., Dargusch R., Maher P. and Schubert D. (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid-β peptide. Neuron 39, 4356.
  • Sousa L. P., Silva B. M., Brasil B. S., Nogueira S. V., Ferreira P. C., Kroon E. G., Kato K. and Bonjardim C. A. (2005) Plasminogen/plasmin regulates α-enolase expression through the MEK/ERK pathway. Biochem. Biophys. Res. Commun. 337, 10651071.
  • Spencer C. A. and Groudine M. (1991) Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56, 148.
  • Stauber J., Lemaire R., Franck J., Bonnel D., Croix D., Day R., Wisztorski M., Fournier I. and Salzet M. (2008) MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J. Proteome Res. 7, 969978.
  • Sturchler-Pierrat C., Abramowski D., Duke M. et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA 94, 1328713292.
  • Subramanian A. and Miller D. M. (2000) Structural analysis of α-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J. Biol. Chem. 275, 59585965.
  • Sultana R., Boyd-Kimball D., Poon H. F., Cai J., Pierce W. M., Klein J. B., Merchant M., Markesbery W. R. and Butterfield D. A. (2006a) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol. Aging 27, 15641576.
  • Sultana R., Poon H. F., Cai J., Pierce W. M., Merchant M., Klein J. B., Markesbery W. R. and Butterfield D. A. (2006b) Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol. Dis. 22, 7687.
  • Sultana R., Boyd-Kimball D., Cai J., Pierce W. M., Klein J. B., Merchant M. and Butterfield D. A. (2007) Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J. Alzheimers Dis. 11, 153164.
  • Sultana R., Perluigi M., Newman S. F., Pierce W., Cini C., Coccia R. and Butterfield D. A. (2009) Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer’s disease. Antioxidant Redox. Signal. in press.
  • Takei N., Kondo J., Nagaike K., Ohsawa K., Kato K. and Kohsaka S. (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J. Neurochem. 57, 11781184.
  • Tanzi R. E., McClatchey A. I., Lamperti E. D., Villa-Komaroff L., Gusella J. F. and Neve R. L. (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331, 528530.
  • Tarui T., Majumdar M., Miles L. A., Ruf W. and Takada Y. (2002) Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J. Biol. Chem. 277, 3356433570.
  • Thompson K. S. and Towle H. C. (1991) Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene. J. Biol. Chem. 266, 86798682.
  • Toole-Simms W., Sun I. L., Faulk W. P., Low H., Lindgren A., Crane F. L. and Morre D. J. (1991) Inhibition of transplasma membrane electron transport by monoclonal antibodies to the transferrin receptor. Biochem. Biophys. Res. Commun. 176, 14371442.
  • Towle H. C. (1995) Metabolic regulation of gene transcription in mammals. J. Biol. Chem. 270, 2323523238.
  • Trojanowski J. Q., Mawal-Dewan M., Schmidt M. L., Martin J. and Lee V. M. (1993) Localization of the mitogen activated protein kinase ERK2 in Alzheimer’s disease neurofibrillary tangles and senile plaque neurites. Brain Res. 618, 333337.
  • Tsirka S. E., Gualandris A., Amaral D. G. and Strickland S. (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377, 340344.
  • Tsirka S. E., Rogove A. D. and Strickland S. (1996) Neuronal cell death and tPA. Nature 384, 123124.
  • Tsirka S. E., Rogove A. D., Bugge T. H., Degen J. L. and Strickland S. (1997) An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci. 17, 543552.
  • Tucker H. M., Kihiko-Ehmann M., Wright S., Rydel R. E. and Estus S. (2000a) Tissue plasminogen activator requires plasminogen to modulate amyloid-β neurotoxicity and deposition. J. Neurochem. 75, 21722177.
  • Tucker H. M., Kihiko M., Caldwell J. N. et al. (2000b) The plasmin system is induced by and degrades amyloid-β aggregates. J. Neurosci. 20, 39373946.
  • Ulery P. G., Beers J., Mikhailenko I., Tanzi R. E., Rebeck G. W., Hyman B. T. and Strickland D. K. (2000) Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer’s disease. J. Biol. Chem. 275, 74107415.
  • Van Nostrand W. E. and Porter M. (1999) Plasmin cleavage of the amyloid β-protein: alteration of secondary structure and stimulation of tissue plasminogen activator activity. Biochemistry 38, 1157011576.
  • Van Nostrand W. E., Wagner S. L., Suzuki M., Choi B. H., Farrow J. S., Geddes J. W., Cotman C. W. and Cunningham D. D. (1989) Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid β-protein precursor. Nature 341, 546549.
  • Van Nostrand W. E., Wagner S. L., Farrow J. S. and Cunningham D. D. (1990) Immunopurification and protease inhibitory properties of protease nexin-2/amyloid β-protein precursor. J. Biol. Chem. 265, 95919594.
  • Varma H., Cheng R., Voisine C., Hart A. C. and Stockwell B. R. (2007) Inhibitors of metabolism rescue cell death in Huntington’s disease models. Proc. Natl Acad. Sci. USA 104, 1452514530.
  • Virji M. A., Vassalli J. D., Estensen R. D. and Reich E. (1980) Plasminogen activator of islets of Langerhans: modulation by glucose and correlation with insulin production. Proc. Natl Acad. Sci. USA 77, 875879.
  • Wang G. L. and Semenza G. L. (1993a) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 2151321518.
  • Wang G. L. and Semenza G. L. (1993b) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 43044308.
  • Wang G. L., Jiang B. H., Rue E. A. and Semenza G. L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 55105514.
  • Weinstein M. J. and Doolittle R. F. (1972) Differential specificities of the thrombin, plasmin and trypsin with regard to synthetic and natural substrates and inhibitors. Biochim. Biophys. Acta 258, 577590.
  • Willoughby D. A., Rozovsky I., Lo A. C. and Finch C. E. (1995) β-Amyloid precursor protein (APP) and APP-RNA are rapidly affected by glutamate in cultured neurons: selective increase of mRNAs encoding a Kunitz protease inhibitor domain. J. Mol. Neurosci. 6, 257276.
  • Winblad B., Palmer K., Kivipelto M. et al. (2004) Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 256, 240246.
  • Wisniewski T., Dowjat W. K., Buxbaum J. D. et al. (1998) A novel Polish presenilin-1 mutation (P117L) is associated with familial Alzheimer’s disease and leads to death as early as the age of 28 years. Neuroreport 9, 217221.
  • Wistow G. J., Lietman T., Williams L. A., Stapel S. O., De Jong W. W., Horwitz J. and Piatigorsky J. (1988) τ-Crystallin/α-enolase: one gene encodes both an enzyme and a lens structural protein. J. Cell Biol. 107, 27292736.
  • Wnendt S., Wetzels I. and Gunzler W. A. (1997) Amyloid β peptides stimulate tissue-type plasminogen activator but not recombinant prourokinase. Thromb. Res. 85, 217224.
  • Xu K. Y., Zweier J. L. and Becker L. C. (1995) Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ. Res. 77, 8897.
  • Xu F., Davis J., Miao J., Previti M. L., Romanov G., Ziegler K. and Van Nostrand W. E. (2005) Protease nexin-2/amyloid β-protein precursor limits cerebral thrombosis. Proc. Natl Acad. Sci. USA 102, 1813518140.
  • Xu F., Previti M. L., Nieman M. T., Davis J., Schmaier A. H. and Van Nostrand W. E. (2009) AβPP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis. J. Neurosci. 29, 56665670.
  • Yang Y. T., Ju T. C. and Yang D. I. (2005) Induction of hypoxia inducible factor-1 attenuates metabolic insults induced by 3-nitropropionic acid in rat C6 glioma cells. J. Neurochem. 93, 513525.
  • Zhan S. S., Sandbrink R., Beyreuther K. and Schmitt H. P. (1995) APP with Kunitz type protease inhibitor domain (KPI) correlates with neuritic plaque density but not with cortical synaptophysin immunoreactivity in Alzheimer’s disease and non-demented aged subjects: a multifactorial analysis. Clin. Neuropathol. 14, 142149.
  • Zhu J. H., Kulich S. M., Oury T. D. and Chu C. T. (2002a) Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in Lewy body diseases. Am. J. Pathol. 161, 20872098.
  • Zhu X., Lee H. G., Raina A. K., Perry G. and Smith M. A. (2002b) The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals 11, 270281.
  • Zhu J. H., Guo F., Shelburne J., Watkins S. and Chu C. T. (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. 13, 473481.