SEARCH

SEARCH BY CITATION

References

  • Aguirre J. A., Kehr J., Yoshitake T. et al. (2005) Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res. 1033, 216220.
  • Alfinito P. D., Wang S. P., Manzino L., Rijhsinghani S., Zeevalk G. D. and Sonsalla P. K. (2003) Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J. Neurosci. 23, 1098210987.
  • Barcia C., Sánchez Bahillo A., Fernández-Villalba E., Bautista V., Poza Y., Poza M., Fernández-Barreiro A., Hirsch E. C. and Herrero M. T. (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46, 402409.
  • Bastia E., Xu Y. H., Scibelli A. C., Day Y. J., Linden J., Chen J. F. and Schwarzschild M. A. (2005) A crucial role for forebrain adenosine A(2A) receptors in amphetamine sensitization. Neuropsychopharmacology 30, 891900.
  • Battaglia G., Busceti C. L., Molinaro G., Biagioni F., Storto M., Fornai F., Nicoletti F. and Bruno V. (2004) Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J. Neurosci. 24, 828835.
  • Blum D., Galas M. C., Pintor A. et al. (2003) A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J. Neurosci. 23, 53615369.
  • Carta A. R., Pinna A., Tronci E. and Morelli M. (2003) Adenosine A2A and dopamine receptor interactions in basal ganglia of dopamine denervated rats. Neurology 61, S39S43.
  • Chen J. F., Huang Z., Ma J., Zhu J., Moratalla R., Standaert D., Moskowitz M. A., Fink J. S. and Schwarzschild M. A. (1999) A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J. Neurosci. 19, 91929200.
  • Chen J. F., Xu K., Petzer J. P., Staal R., Xu Y. H., Beilstein M., Sonsalla P. K., Castagnoli K., Castagnoli N. Jr and Schwarzschild M. A. (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J. Neurosci. 21, RC143: 16.
  • Cunha R. A. (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem. Int. 38, 107125.
  • Dall’Igna O. P., Porciúncula L. O., Souza D. O., Cunha R. A. and Lara D. R. (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br. J. Pharmacol. 138, 12071209.
  • Fiebich B. L., Biber K., Lieb K., Van Calker D., Berger M., Bauer J. and Gebicke-Haerter P. J. (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18, 152160.
  • Fink J. S., Kalda A., Ryu H., Stack E. C., Schwarzschild M. A., Chen J. F. and Ferrante R. J. (2004) Genetic and pharmacological inactivation of the adenosine A2A receptor attenuates 3-nitropropionic acid-induced striatal damage. J. Neurochem. 88, 538544.
  • Fredholm B. B., Cunha R. A. and Svenningsson P. (2003) Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 3, 413426.
  • Fuxe K., Agnati L. F., Jacobsen K. et al. (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 61, S19S23.
  • Gianfriddo M., Melani A., Turchi D., Giovannini M. G. and Pedata F. (2004) Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiol Dis 17, 7788.
  • Gomes C. A., Vaz S. H., Ribeiro J. A. and Sebastião A. M. (2006) Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res. 1113, 129136.
  • Gomes C. A., Simões P. F., Canas P. M., Quiroz C., Sebastião A. M., Ferré S., Cunha R. A. and Ribeiro J. A. (2009) GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A receptors. J. Neurochem. 108, 12081219.
  • Huang Q. Y., Wei C., Yu L., Coelho J. E., Shen H. Y., Kalda A., Linden J. and Chen J. F. (2006) Adenosine A2A receptors in bone marrow-derived cells but not in forebrain neurons are important contributors to 3-nitropropionic acid-induced striatal damage as revealed by cell-type-selective inactivation. J. Neurosci. 26, 1137111378.
  • Hunot S. and Hirsch E. C. (2003) Neuroinflammatory processes in Parkinson’s disease. Ann. Neurol. 53, S49S58.
  • Ikeda K., Kurokawa M., Aoyama S. and Kuwana Y. (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J. Neurochem. 80, 262270.
  • Irving E. A., Barone F. C., Reith A. D., Hadingham S. J. and Parsons A. A. (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res. Mol. Brain Res. 77, 6575.
  • Jackson-Lewis V., Jakowec M., Burke R. E. and Przedborski S. (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4, 257269.
  • Kawasaki H., Morooka T., Shimohama S., Kimura J., Hirano T., Gotoh Y. and Nishida E. (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J. Biol. Chem. 272, 1851818521.
  • Kull B., Svenningsson P. and Fredholm B. B. (2000) Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol. Pharmacol. 58, 771777.
  • Küst B. M., Biber K., Van Calker D. and Gebicke-Haerter P. J. (1999) Regulation of K+ channel mRNA expression by stimulation of adenosine A2a-receptors in cultured rat microglia. Glia 25, 120130.
  • Li X. X., Nomura T., Aihara H. and Nishizaki T. (2001) Adenosine enhances glial glutamate efflux via A2a adenosine receptors. Life Sci. 68, 13431350.
  • Marchi M., Raiteri L., Risso F., Vallarino A., Bonfanti A., Monopoli A., Ongini E. and Raiteri M. (2002) Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br. J. Pharmacol. 136, 434440.
  • McGeer P. L., Itagaki S., Boyes B. E. and McGeer E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 12851291.
  • Melani A., Pantoni L., Bordoni F., Gianfriddo M., Bianchi L., Vannucchi M. G., Bertorelli R., Monopoli A. and Pedata F. (2003) The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res. 959, 243250.
  • Melani A., Gianfriddo M., Vannucchi M. G., Cipriani S., Baraldi P. G., Giovannini M. G. and Pedata F. (2006) The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res. 1073–1074, 470480.
  • Nishizaki T. (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J. Pharmacol. Sci. 94, 100102.
  • Paxinos G. and Franklin K. B. J. (2001) The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press, San Diego, CA.
  • Pedata F., Pugliese A. M., Melani A. and Gianfriddo M. (2003) A2A receptors in neuroprotection of dopaminergic neurons. Neurology 61, S49S50.
  • Piao C. S., Yu Y. M., Han P. L. and Lee J. K. (2003) Dynamic expression of p38beta MAPK in neurons and astrocytes after transient focal ischemia. Brain Res. 976, 120124.
  • Pierri M., Vaudano E., Sager T. and Englund U. (2005) KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology 48, 517524.
  • Pinna A., Pontis S., Borsini F. and Morelli M. (2007) Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Synapse 61, 606614.
  • Popoli P., Betto P., Reggio R. and Ricciarello G. (1995) Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur. J. Pharmacol. 287, 215217.
  • Popoli P., Pintor A., Domenici M. R. et al. (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J. Neurosci. 22, 19671975.
  • Rebola N., Canas P. M., Oliveira C. R. and Cunha R. A. (2005) Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132, 893903.
  • Rosin D. L., Robeva A., Woodard R. L., Guyenet P. G. and Linden J. (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J. Comp. Neurol. 401, 163186.
  • Rosin D. L., Hettinger B. D., Lee A. and Linden J. (2003) Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 61, S12S18.
  • Saura J., Angulo E., Ejarque A. et al. (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J. Neurochem. 95, 919929.
  • Schiffmann S. N., Jacobs O. and Vanderhaeghen J. J. (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J. Neurochem. 57, 10621067.
  • Schiffmann S. N., Fisone G., Moresco R., Cunha R. A. and Ferré S. (2007) Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol. 83, 277292.
  • Schintu N., Frau L., Ibba M., Garau A., Carboni E. and Carta A. R. (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox. Res. 16, 127139.
  • Schmidt N. and Ferger B. (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm. 108, 12631282.
  • Schwarzschild M. A., Agnati L., Fuxe K., Chen J. F. and Morelli M. (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci. 29, 647654.
  • Shen H. Y., Coelho J. E., Ohtsuka N. et al. (2008) A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J. Neurosci. 28, 29702975.
  • Silva C. G., Porciúncula L. O., Canas P. M., Oliveira C. R. and Cunha R. A. (2007) Blockade of adenosine A(2A) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiol Dis 27, 182189.
  • Svenningsson P., Le Moine C., Fisone G. and Fredholm B. B. (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol. 59, 355396.
  • Tatton N. A. and Kish S. J. (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77, 10371048.
  • Wallace B. A., Ashkan K., Heise C. E., Foote K. D., Torres N., Mitrofanis J. and Benabid A. L. (2007) Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 130, 21292145.
  • Wu D. C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., Choi D. K., Ischiropoulos H. and Przedborski S. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 17631771.
  • Yu L., Shen H. Y., Coelho J. E. et al. (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann. Neurol. 63, 338346.