SEARCH

SEARCH BY CITATION

References

  • Adriany G. and Gruetter R. (1997) A half-volume coil for efficient proton decoupling in humans at 4 tesla. J. Magn. Reson. 125, 178184.
  • Alcolea A., Carrera J. and Medina A. (1999) A hybrid Marquardt-simulated annealing method for solving the groundwater inverse problem, in Proceedings of the ModelCARE 99 Conference, pp. 157163. IAHS publishing, Zurich, Switzerland.
  • Beckmann N., Turkalj I., Seelig J. and Keller U. (1991) 13C NMR for the assessment of human brain glucose metabolism in vivo. Biochemistry 30, 63626366.
  • Behar K. L., Petroff O. A., Prichard J. W., Alger J. R. and Shulman R. G. (1986) Detection of metabolites in rabbit brain by 13C NMR spectroscopy following administration of [1–13C]glucose. Magn. Reson. Med. 3, 911920.
  • Bluml S., Moreno-Torres A., Shic F., Nguy C. H. and Ross B. D. (2002) Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed. 15, 15.
  • Boumezbeur F., Besret L., Valette J. et al. (2005) Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR. J. Cereb. Blood Flow Metab. 25, 14181423.
  • Chaudhry F. A., Lehre K. P., Van Lookeren Campagne M., Ottersen O. P., Danbolt N. C. and Storm-Mathisen J. (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711720.
  • Chen W., Zhu X. H., Gruetter R., Seaquist E. R., Adriany G. and Ugurbil K. (2001) Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using 1H-[13C] MRS and fMRI. Magn. Reson. Med. 45, 349355.
  • Chhina N., Kuestermann E., Halliday J., Simpson L. J., Macdonald I. A., Bachelard H. S. and Morris P. G. (2001) Measurement of human tricarboxylic acid cycle rates during visual activation by 13C magnetic resonance spectroscopy. J. Neurosci. Res. 66, 737746.
  • Deelchand D. K., Shestov A. A., Koski D. M., Ugurbil K. and Henry P. G. (2009a) Acetate transport and utilization in the rat brain. J. Neurochem. 109, 4654.
  • Deelchand D. K., Nelson C., Shestov A. A., Ugurbil K. and Henry P. G. (2009b) Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6-13C2]glucose and [1,2-13C2]acetate. J. Magn. Reson. 196, 157163.
  • Fitzpatrick S. M., Hetherington H. P., Behar K. L. and Shulman R. G. (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J. Cereb. Blood Flow Metab. 10, 170179.
  • Fujiwara T. and Nagayama K. (1988) Composite inversion pulses with frequency switching and their application to broadband decoupling. J. Magn. Reson. 77, 5363.
  • De Graaf R. A. (2005) Theoretical and experimental evaluation of broadband decoupling techniques for in vivo NMR spectroscopy. Magn. Reson. Med. 53, 12971306.
  • De Graaf R. A. and Nicolay K. (1998) Adiabatic water suppression using frequency selective excitation. Magn. Reson. Med. 40, 690696.
  • De Graaf R. A., Brown P. B., Mason G. F., Rothman D. L. and Behar K. L. (2003) Detection of [1,6-13C2]-glucose metabolism in rat brain by in vivo1H-[13C]-NMR spectroscopy. Magn. Reson. Med. 49, 3746.
  • De Graaf R. A., Mason G. F., Patel A. B., Rothman D. L. and Behar K. L. (2004) Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc. Natl Acad. Sci. USA 101, 1270012705.
  • De Graaf R. A., Patel A. B., Rothman D. L. and Behar K. L. (2006a) Acute regulation of steady-state GABA levels following GABA-transaminase inhibition in rat cerebral cortex. Neurochem. Int. 48, 508514.
  • De Graaf R. A., Brown P. B., McIntyre S., Nixon T. W., Behar K. L. and Rothman D. L. (2006b) High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn. Reson. Med. 56, 386394.
  • Gruetter R. (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn. Reson. Med. 29, 804811.
  • Gruetter R., Novotny E. J., Boulware S. D., Mason G. F., Rothman D. L., Shulman G. I., Prichard J. W. and Shulman R. G. (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[1-13C]glucose. J. Neurochem. 63, 13771385.
  • Gruetter R., Seaquist E. R. and Ugurbil K. (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am. J. Physiol. Endocrinol. Metab. 281, E100E112.
  • Haase A., Frahm J., Hanicke W. and Matthaei D. (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys. Med. Biol. 30, 341344.
  • Hassel B., Johannessen C. U., Sonnewald U. and Fonnum F. (1998) Quantification of the GABA shunt and the importance of the GABA shunt versus the 2-oxoglutarate dehydrogenase pathway in GABAergic neurons. J. Neurochem. 71, 15111518.
  • Henry P. G., Russeth K. P., Tkac I., Drewes L. R., Andrews M. T. and Gruetter R. (2007) Brain energy metabolism and neurotransmission at near-freezing temperatures: in vivo1H MRS study of a hibernating mammal. J. Neurochem. 101, 15051515.
  • Lebon V., Petersen K. F., Cline G. W., Shen J., Mason G. F., Dufour S., Behar K. L., Shulman G. I. and Rothman D. L. (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. 22, 15231531.
  • Manor D., Rothman D. L., Mason G. F., Hyder F., Petroff O. A. and Behar K. L. (1996) The rate of turnover of cortical GABA from [1-13C]glucose is reduced in rats treated with the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA). Neurochem. Res. 21, 10311041.
  • Mason G. F., Behar K. L., Rothman D. L. and Shulman R. G. (1992) NMR determination of intracerebral glucose concentration and transport kinetics in rat brain. J. Cereb. Blood Flow Metab. 12, 448455.
  • Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G. and Novotny E. J. (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J. Cereb. Blood Flow Metab. 15, 1225.
  • Mason G. F., Martin D. L., Martin S. B., Manor D., Sibson N. R., Patel A., Rothman D. L. and Behar K. L. (2001) Decrease in GABA synthesis rate in rat cortex following GABA-transaminase inhibition correlates with the decrease in GAD(67) protein. Brain Res. 914, 8191.
  • Mason G. F., Falk Petersen K., De Graaf R. A., Kanamatsu T., Otsuki T. and Rothman D. L. (2003) A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C]glucose. Brain Res. Brain Res. Protoc. 10, 181190.
  • Mason G. F., Petersen K. F., De Graaf R. A., Shulman G. I. and Rothman D. L. (2007) Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose. J. Neurochem. 100, 7386.
  • Mescher M., Merkle H., Kirsch J., Garwood M. and Gruetter R. (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266272.
  • Patel A. B., De Graaf R. A., Mason G. F., Kanamatsu T., Rothman D. L., Shulman R. G. and Behar K. L. (2004) Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J. Cereb. Blood Flow Metab. 24, 972985.
  • Patel A. B., De Graaf R. A., Mason G. F., Rothman D. L., Shulman R. G. and Behar K. L. (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc. Natl Acad. Sci. USA 102, 55885593.
  • Pfeuffer J., Tkac I., Provencher S. W. and Gruetter R. (1999a) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J. Magn. Reson. 141, 104120.
  • Pfeuffer J., Tkac I., Choi I. Y., Merkle H., Ugurbil K., Garwood M. and Gruetter R. (1999b) Localized in vivo1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magn. Reson. Med. 41, 10771083.
  • Preece N. E. and Cerdan S. (1996) Metabolic precursors and compartmentation of cerebral GABA in vigabatrin-treated rats. J. Neurochem. 67, 17181725.
  • Provencher S. W. (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672679.
  • Ratiney H., Sdika M., Coenradie Y., Cavassila S., Van Ormondt D. and Graveron-Demilly D. (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 18, 113.
  • Rothman D. L., Behar K. L., Hetherington H. P., Den Hollander J. A., Bendall M. R., Petroff O. A. and Shulman R. G. (1985) 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc. Natl Acad. Sci. USA 82, 16331637.
  • Rothman D. L., Novotny E. J., Shulman G. I., Howseman A. M., Petroff O. A., Mason G., Nixon T., Hanstock C. C., Prichard J. W. and Shulman R. G. (1992) 1H-[13C] NMR measurements of [4-13C]glutamate turnover in human brain. Proc. Natl Acad. Sci. USA 89, 96039606.
  • Shen J., Petersen K. F., Behar K. L., Brown P., Nixon T. W., Mason G. F., Petroff O. A., Shulman G. I., Shulman R. G. and Rothman D. L. (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo13C NMR. Proc. Natl Acad. Sci. USA 96, 82358240.
  • Sibson N. R., Dhankhar A., Mason G. F., Behar K. L., Rothman D. L. and Shulman R. G. (1997) In vivo13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc. Natl Acad. Sci. USA 94, 26992704.
  • Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L. and Shulman R. G. (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl Acad. Sci. USA 95, 316321.
  • Sibson N. R., Mason G. F., Shen J., Cline G. W., Herskovits A. Z., Wall J. E., Behar K. L., Rothman D. L. and Shulman R. G. (2001) In vivo13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]-glucose infusion. J. Neurochem. 76, 975989.
  • Storm-Mathisen J., Leknes A. K., Bore A. T., Vaaland J. L., Edminson P., Haug F. M. and Ottersen O. P. (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301, 517520.
  • Tannus A. and Garwood M. (1996) Improved performance of frequency-swept pulses using offset-independent adiabaticity. J. Magn. Reson. A 120, 133137.
  • Yang J., Li S. S., Bacher J. and Shen J. (2007) Quantification of cortical GABA-glutamine cycling rate using in vivo magnetic resonance signal of [2-13C]GABA derived from glia-specific substrate [2-13C]acetate. Neurochem. Int. 50, 371378.