SEARCH

SEARCH BY CITATION

References

  • Abramov A. Y., Canevari L. and Duchen M. R. (2004) Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim. Biophys. Acta 1742, 8187.
  • Alarcon R., Fuenzalida C., Santibanez M. and Von Bernhardi R. (2005) Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J. Biol. Chem. 280, 3040630415.
  • Antic A., Dzenko K. A. and Pachter J. S. (2000) Engagement of the scavenger receptor is not responsible for beta-amyloid stimulation of monocytes to a neurocytopathic state. Exp. Neurol. 161, 96101.
  • Arelin K., Kinoshita A., Whelan C. M., Irizarry M. C., Rebeck G. W., Strickland D. K. and Hyman B. T. (2002) LRP and senile plaques in Alzheimer’s disease: colocalization with apolipoprotein E and with activated astrocytes. Brain Res. Mol. Brain Res. 104, 3846.
  • Bamberger M. E., Harris M. E., McDonald D. R., Husemann J. and Landreth G. E. (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J. Neurosci. 23, 26652674.
  • Brandenburg L. O., Koch T., Sievers J. and Lucius R. (2007) Internalization of PrP106-126 by the formyl-peptide-receptor-like-1 in glial cells. J. Neurochem. 101, 718728.
  • Brandenburg L. O., Konrad M., Wruck C., Koch T., Pufe T. and Lucius R. (2008) Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1-42 in glial cells. Neuroscience 156, 266276.
  • Combs C. K., Johnson D. E., Cannady S. B., Lehman T. M. and Landreth G. E. (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J. Neurosci. 19, 928939.
  • Eikelenboom P., Bate C., Van Gool W. A., Hoozemans J. J., Rozemuller J. M., Veerhuis R. and Williams A. (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40, 232239.
  • El Khoury J., Hickman S. E., Thomas C. A., Loike J. D. and Silverstein S. C. (1998) Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s disease. Neurobiol. Aging 19, S81S84.
  • Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., Teplow D. B. and Selkoe D. J. (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 88768884.
  • Koenigsknecht J. and Landreth G. (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J. Neurosci. 24, 98389846.
  • Kraal G., Van Der Laan L. J., Elomaa O. and Tryggvason K. (2000) The macrophage receptor MARCO. Microbes Infect. 2, 313316.
  • Lambert M. P., Barlow A. K., Chromy B. A. et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 64486453.
  • Laporte V., Lombard Y., Levy-Benezra R., Tranchant C., Poindron P. and Warter J. M. (2004) Uptake of Abeta 1-40- and Abeta 1-42-coated yeast by microglial cells: a role for LRP. J. Leukoc. Biol. 76, 451461.
  • Le Y., Gong W., Tiffany H. L. et al. (2001) Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 21, RC123.
  • Le Y., Murphy P. M. and Wang J. M. (2002) Formyl-peptide receptors revisited. Trends Immunol. 23, 541548.
  • Lorenzo A. and Yankner B. A. (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl Acad. Sci. USA 91, 1224312247.
  • Lorton D., Schaller J., Lala A. and De Nardin E. (2000) Chemotactic-like receptors and Abeta peptide induced responses in Alzheimer’s disease. Neurobiol. Aging 21, 463473.
  • McCarthy K. D. and De Vellis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890902.
  • McDonald D. R., Bamberger M. E., Combs C. K. and Landreth G. E. (1998) beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. Neurosci. 18, 44514460.
  • Mukhopadhyay S. and Gordon S. (2004) The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology 209, 3949.
  • Mukhopadhyay S., Chen Y., Sankala M., Peiser L., Pikkarainen T., Kraal G., Tryggvason K. and Gordon S. (2006) MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur. J. Immunol. 36, 940949.
  • Nagele R. G., D’Andrea M. R., Anderson W. J. and Wang H. Y. (2002) Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 110, 199211.
  • Nagele R. G., Wegiel J., Venkataraman V., Imaki H., Wang K. C. and Wegiel J. (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol. Aging 25, 663674.
  • Nakamura T., Suzuki H., Wada Y., Kodama T. and Doi T. (2006) Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-kappaB-dependent signaling pathways through macrophage scavenger receptors. Biochem. Biophys. Res. Commun. 343, 286294.
  • Paresce D. M., Ghosh R. N. and Maxfield F. R. (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17, 553565.
  • Potter R. M., Key T. A., Gurevich V. V., Sklar L. A. and Prossnitz E. R. (2002) Arrestin variants display differential binding characteristics for the phosphorylated N-formyl peptide receptor carboxyl terminus. J. Biol. Chem. 277, 89708978.
  • Qin L., Liu Y., Cooper C., Liu B., Wilson B. and Hong J. S. (2002) Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J. Neurochem. 83, 973983.
  • Rabiet M. J., Huet E. and Boulay F. (2007) The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 89, 10891106.
  • Selkoe D. J. (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis. 3, 7580.
  • Vines C. M., Revankar C. M., Maestas D. C., LaRusch L. L., Cimino D. F., Kohout T. A., Lefkowitz R. J. and Prossnitz E. R. (2003) N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. J. Biol. Chem. 278, 4158141584.
  • Wilms H., Rosenstiel P., Sievers J., Deuschl G., Zecca L. and Lucius R. (2003) Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 17, 500502.
  • Yan S. D., Chen X., Fu J. et al. (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382, 685691.
  • Yazawa H., Yu Z. X., Takeda K., Le Y., Gong W., Ferrans V. J., Oppenheim J. J., Li C. C. and Wang J. M. (2001) Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J. 15, 24542462.
  • Zamboni L. and DeMartino C. (1967) Buffered picric acid–formaldehyde: a new, rapid fixative for electron microscopy. J. Cell Biol 35, 148a.