SEARCH

SEARCH BY CITATION

References

  • Alexi T., Hughes P. E., Faull R. L. and Williams C. E. (1998) 3-Nitropropionic acid’s lethal triplet: cooperative pathways of neurodegeneration. Neuroreport 9, R57R64.
  • Appelberg K. S., Hovda D. A. and Prins M. L. (2009) The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J. Neurotrauma 26, 497506.
  • Avshalumov M. V., Chen B. T. and Rice M. E. (2000) Mechanisms underlying H(2)O(2)-mediated inhibition of synaptic transmission in rat hippocampal slices. Brain Res. 882, 8694.
  • Ayala A., Venero J. L., Cano J. and Machado A. (2007) Mitochondrial toxins and neurodegenerative diseases. Front. Biosci. 12, 9861007.
  • Balietti M., Giorgetti B., Fattoretti P. et al. (2008) Ketogenic diets cause opposing changes in synaptic morphology in CA1 hippocampus and dentate gyrus of late-adult rats. Rejuvenation Res. 11, 631640.
  • Bao L., Avshalumov M. V. and Rice M. E. (2005) Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J. Neurosci. 25, 1002910040.
  • Baud O., Greene A. E., Li J., Wang H., Volpe J. J. and Rosenberg P. A. (2004) Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J. Neurosci. 24, 15311540.
  • Bough K. J., Wetherington J., Hassel B., Pare J. F., Gawryluk J. W., Greene J. G., Shaw R., Smith Y., Geiger J. D. and Dingledine R. J. (2006) Mitochondrial biogenesis in the anticonvulsant mechanisms of the ketogenic diet. Ann. Neurol. 60, 223235.
  • Calabresi P., Gubellini P., Picconi B., Centonze D., Pisani A., Bonsi P., Greengard P., Hipskind R. A., Borrelli E. and Bernardi G. (2001) Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J. Neurosci. 21, 51105120.
  • Cassarino D. S. and Bennett Jr J. P. (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res. Brain Res. Rev. 29, 125.
  • Costa C., Belcastro V., Tozzi A. et al. (2008) Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J. Neurosci. 28, 80408052.
  • Dardzinski B. J., Smith S. L., Towfighi J., Williams G. D., Vannucci R. C. and Smith M. B. (2000) Increased plasma beta-hydroxybutyrate, preserved cerebral energy metabolism, and amelioration of brain damage during neonatal hypoxia ischemia with dexamethasone pretreatment. Pediatr. Res. 48, 248255.
  • Davies S. and Ramsden D. B. (2001) Huntington’s disease. Mol. Pathol. 54, 409413.
  • Foster K. A., Galeffi F., Gerich F. J., Turner D. A. and Muller M. (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog. Neurobiol. 79, 136171.
  • Frantseva M. V., Carlen P. L. and Perez Velazquez J. L. (2001) Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons. Free Radic. Biol. Med. 31, 12161227.
  • Haces M. L., Hernandez-Fonseca K., Medina-Campos O. N., Montiel T., Pedraza-Chaverri J. and Massieu L. (2008) Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp. Neurol. 211, 8596.
  • Henderson S. T., Vogel J. L., Barr L. J., Garvin F., Jones J. J. and Costantini L. C. (2009) Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. (Lond) 6, 31.
  • Huber S. J., Shuttleworth E. C. and Paulson G. W. (1986) Dementia in Parkinson’s disease. Arch. Neurol. 43, 987990.
  • Hyslop P. A., Zhang Z., Pearson D. V. and Phebus L. A. (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain Res. 671, 181186.
  • Imamura K., Takeshima T., Kashiwaya Y., Nakaso K. and Nakashima K. (2006) D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson’s disease. J. Neurosci. Res. 84, 13761384.
  • Izumi Y., Ishii K., Katsuki H., Benz A. M. and Zorumski C. F. (1998) beta-Hydroxybutyrate fuels synaptic function during development. Histological and physiological evidence in rat hippocampal slices. J. Clin. Invest. 101, 11211132.
  • Jarrett S. G., Milder J. B., Liang L. P. and Patel M. (2008) The ketogenic diet increases mitochondrial glutathione levels. J. Neurochem. 106, 10441051.
  • Kamsler A. and Segal M. (2003) Hydrogen peroxide modulation of synaptic plasticity. J. Neurosci. 23, 269276.
  • Kang H. C., Lee Y. M., Kim H. D., Lee J. S. and Slama A. (2007) Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia 48, 8288.
  • Karanian D. A., Baude A. S., Brown Q. B., Parsons C. G. and Bahr B. A. (2006) 3-Nitropropionic acid toxicity in hippocampus: protection through N-methyl-D-aspartate receptor antagonism. Hippocampus 16, 834842.
  • Kashiwaya Y., Takeshima T., Mori N., Nakashima K., Clarke K. and Veech R. L. (2000) D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc. Natl Acad. Sci. USA 97, 54405444.
  • Keating D. J. (2008) Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J. Neurochem. 104, 298305.
  • Kim do Y. and Rho J. M. (2008) The ketogenic diet and epilepsy. Curr. Opin. Clin. Nutr. Metab. Care 11, 113120.
  • Kim D. Y., Davis L. M., Sullivan P. G., Maalouf M., Simeone T. A., Brederode J. V. and Rho J. M. (2007) Ketone bodies are protective against oxidative stress in neocortical neurons. J. Neurochem. 101, 13161326.
  • Klann E. and Thiels E. (1999) Modulation of protein kinases and protein phosphatases by reactive oxygen species: implications for hippocampal synaptic plasticity. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 359376.
  • Kudin A. P., Bimpong-Buta N. Y., Vielhaber S., Elger C. E. and Kunz W. S. (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279, 41274135.
  • Kweon G. R., Marks J. D., Krencik R., Leung E. H., Schumacker P. T., Hyland K. and Kang U. J. (2004) Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells. J. Biol. Chem. 279, 5178351792.
  • Lei B., Adachi N. and Arai T. (1997) The effect of hypothermia on H2O2 production during ischemia and reperfusion: a microdialysis study in the gerbil hippocampus. Neurosci. Lett. 222, 9194.
  • Liang R., Pang Z. P., Deng P. and Xu Z. C. (2009) Transient enhancement of inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons after cerebral ischemia. Neuroscience 160, 412418.
  • Lin M. T. and Beal M. F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787795.
  • Maalouf M. and Rho J. M. (2008) Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J. Neurosci. Res. 86, 33223330.
  • Maalouf M., Sullivan P. G., Davis L., Kim D. Y. and Rho J. M. (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 145, 256264.
  • Maalouf M., Rho J. M. and Mattson M. P. (2009) The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res. Rev. 59, 293315.
  • Mancuso M., Coppede F., Migliore L., Siciliano G. and Murri L. (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J. Alzheimers Dis. 10, 5973.
  • Masino S. A. and Geiger J. D. (2008) Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci. 31, 273278.
  • Masuda R., Monahan J. W. and Kashiwaya Y. (2005) D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. J. Neurosci. Res. 80, 501509.
  • Montiel T., Quiroz-Baez R., Massieu L. and Arias C. (2006) Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. Exp. Neurol. 200, 496508.
  • Nordli Jr D. R. and De Vivo D. C. (1997) The ketogenic diet revisited: back to the future. Epilepsia 38, 743749.
  • Nylen K., Velazquez J. L., Sayed V., Gibson K. M., Burnham W. M. and Snead 3rd O. C. (2009) The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(-/-) mice. Biochim. Biophys. Acta 1790, 208212.
  • Opii W. O., Nukala V. N., Sultana R., Pandya J. D., Day K. M., Merchant M. L., Klein J. B., Sullivan P. G. and Butterfield D. A. (2007) Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J. Neurotrauma 24, 772789.
  • Palay S. L. (1956) Synapses in the central nervous system. J. Biophys. Biochem. Cytol. 2, 193202.
  • Pang Z. and Geddes J. W. (1997) Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J. Neurosci. 17, 30643073.
  • Panov A., Dikalov S., Shalbuyeva N., Taylor G., Sherer T. and Greenamyre J. T. (2005) Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem. 280, 4202642035.
  • Pellmar T. C. (1987) Peroxide alters neuronal excitability in the CA1 region of guinea-pig hippocampus in vitro. Neuroscience 23, 447456.
  • Petrozzi L., Ricci G., Giglioli N. J., Siciliano G. and Mancuso M. (2007) Mitochondria and neurodegeneration. Biosci. Rep. 27, 87104.
  • Prins M. L. (2008) Cerebral metabolic adaptation and ketone metabolism after brain injury. J. Cereb. Blood Flow Metab. 28, 116.
  • Rebola N., Lujan R., Cunha R. A. and Mulle C. (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57, 121134.
  • Rodriguez-Martinez E., Rugerio-Vargas C., Rodriguez A. I., Borgonio-Perez G. and Rivas-Arancibia S. (2004) Antioxidant effects of taurine, vitamin C, and vitamin E on oxidative damage in hippocampus caused by the administration of 3-nitropropionic acid in rats. Int. J. Neurosci. 114, 11331145.
  • Saybasili H., Yuksel M., Haklar G. and Yalcin A. S. (2001) Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxid. Redox Signal. 3, 10991104.
  • Serpa A., Ribeiro J. A. and Sebastiao A. M. (2009) Cannabinoid CB(1) and adenosine A(1) receptors independently inhibit hippocampal synaptic transmission. Eur. J. Pharmacol. 623, 4146.
  • Serrano F. and Klann E. (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res. Rev. 3, 431443.
  • Sherer T. B., Betarbet R., Testa C. M., Seo B. B., Richardson J. R., Kim J. H., Miller G. W., Yagi T., Matsuno-Yagi A. and Greenamyre J. T. (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. 23, 1075610764.
  • Smith S. L., Heal D. J. and Martin K. F. (2005) KTX 0101: a potential metabolic approach to cytoprotection in major surgery and neurological disorders. CNS Drug Rev. 11, 113140.
  • Sullivan P. G., Rabchevsky A. G., Waldmeier P. C. and Springer J. E. (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J. Neurosci. Res. 79, 231239.
  • Suzuki M., Sato K., Dohi S., Sato T., Matsuura A. and Hiraide A. (2001) Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn. J. Pharmacol. 87, 143150.
  • Takuma K., Yao J., Huang J., Xu H., Chen X., Luddy J., Trillat A. C., Stern D. M., Arancio O. and Yan S. S. (2005) ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J. 19, 597598.
  • Thio L. L., Wong M. and Yamada K. A. (2000) Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission. Neurology 54, 325331.
  • Tieu K., Perier C., Caspersen C. et al. (2003) D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest. 112, 892901.
  • Veech R. L. (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids 70, 309319.
  • Veech R. L., Chance B., Kashiwaya Y., Lardy H. A. and Cahill Jr G. F. (2001) Ketone bodies, potential therapeutic uses. IUBMB Life 51, 241247.
  • Wu Y. N. and Johnson S. W. (2007) Rotenone potentiates NMDA currents in substantia nigra dopamine neurons. Neurosci. Lett. 421, 96100.
  • Zhao Z., Lange D. J., Voustianiouk A., MacGrogan D., Ho L., Suh J., Humala N., Thiyagarajan M., Wang J. and Pasinetti G. M. (2006) A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 7, 29.
  • Ziegler D. R., Ribeiro L. C., Hagenn M., Siqueira I. R., Araujo E., Torres I. L., Gottfried C., Netto C. A. and Goncalves C. A. (2003) Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochem. Res. 28, 17931797.