SEARCH

SEARCH BY CITATION

Keywords:

  • cocaine;
  • dopamine;
  • dopamine transporter;
  • HIV-1;
  • sensitization;
  • Tat

J. Neurochem. (2010) 115, 885–896.

Abstract

In the United States, one-third of infected individuals contracted Human Immunodeficiency Virus-1 (HIV-1) via injecting drugs with contaminated needles or through risky behaviors associated with drug use. Research demonstrates concomitant administration of psychostimulants and HIV-1-proteins damage neurons to a greater extent than viral proteins or the drug alone. To model the onset of HIV-1-infection in relation to a history of drug use, the current research compared behavior and extracellular dopamine and metabolite levels following Tat1–86 infusions in animals with and without a history of cocaine (Coc) experience (10 mg/kg; i.p.; 1 injection/day × 9 days). Animals receiving a behaviorally sensitizing regimen of Coc demonstrated a decrease in extracellular dopamine concentration in the nucleus accumbens, consistent with evidence describing up-regulation of dopamine transporter uptake. Contrary to this effect, Tat1–86 microinfusion into the nucleus accumbens following the sensitizing regimen of Coc caused a significant increase in extracellular dopamine levels (nM) within 48 h with no difference in percent of baseline response to Coc. After 72 h, Tat + Coc treated animals demonstrated a blunted effect on potassium-stimulated extracellular dopamine release (percent of baseline) with a corresponding decrease in expression of behavioral sensitization to Coc challenge. A persistent decrease in extracellular dopamine metabolite levels was found across all time-points in Tat-treated animals, regardless of experience with Coc. The current study provides evidence for divergent neurochemical and behavioral outcomes following Tat-treatment; contingent upon experience with Coc.