SEARCH

SEARCH BY CITATION

References

  • Abramson J., Iwata S. and Kaback H. R. (2004) Lactose permease as a paradigm for membrane transport proteins. Mol. Membr. Biol. 21, 227236.
  • Adler J. and Bibi E. (2004) Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. J. Biol. Chem. 279, 89578965.
  • Armstrong D. and Zidovetzki R. (2009) Helical Wheel Projections. Available from http://rzlab.ucr.edu/scripts/wheel/wheel.cgi (accessed 24.9.2010).
  • Bahr B. A., Clarkson E. D., Rogers G. A., Noremberg K. and Parsons S. M. (1992) A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles. Biochemistry 31, 57525762.
  • Bauerfeind R., Regnier-Vigouroux A., Flatmark T. and Huttner W. B. (1993) Selective storage of acetylcholine, but not catecholamines, in neuroendocrine synaptic-like microvesicles of early endosomal origin. Neuron 11, 105121.
  • Bonzelius F., Herman G., Cardone M., Mostov K. and Kelly R. (1994) The polymeric immunoglobulin receptor accumulates in specialized endosomes but not synaptic vesicles within the neurites of transfected neuroendocrine PC12 cells. J. Cell Biol. 127, 16031616.
  • Bravo D. T., Kolmakova N. G. and Parsons S. M. (2004a) Transmembrane reorientation of the substrate-binding site in vesicular acetylcholine transporter. Biochemistry 43, 87878793.
  • Bravo D. T., Kolmakova N. G. and Parsons S. M. (2004b) Choline is transported by vesicular acetylcholine transporter. J. Neurochem. 91, 766768.
  • Bravo D. T., Kolmakova N. G. and Parsons S. M. (2005a) New transport assay demonstrates vesicular acetylcholine transporter has many alternative substrates. Neurochem. Int. 47, 243247.
  • Bravo D. T., Kolmakova N. G. and Parsons S. M. (2005b) Mutational and pH analysis of ionic residues in transmembrane domains of vesicular acetylcholine transporter. Biochemistry 44, 79557966.
  • Carruthers A., De Zutter J., Ganguly A. and Devaskar S. U. (2009) Will the original glucose transporter isoform please stand up! Am. J. Physiol. 297, E836E848.
  • Chandrasekaran A., Ojeda A. M., Kolmakova N. G. and Parsons S. M. (2006) Mutational and bioinformatics analysis of proline- and glycine-rich motifs in vesicular acetylcholine transporter. J. Neurochem. 98, 15511559.
  • Cho G.-W., Kim M.-H., Chai Y.-G., Gilmor M. L., Levey A. I. and Hersh L. B. (2000) Phosphorylation of the rat vesicular acetylcholine transporter. J. Biol. Chem. 275, 1994219948.
  • Clarkson E. D., Rogers G. A. and Parsons S. M. (1992) Binding and active transport of large analogs of acetylcholine by cholinergic synaptic vesicles in vitro. J. Neurochem. 59, 695700.
  • DeLano W. L. (2002) The PyMOL Molecular Graphics System. DeLano Scientific. Available from: http://www.pymol.org (accessed on 20 September 2010).
  • Dundas J., Ouyang Z., Tseng J., Binkowski A., Turpaz Y. and Liang J. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116W118.
  • Eudes A., Kunji E. R. S., Noiriel A., Klaus S. M. J., Vickers T. J., Beverley S. M., Gregory III J. F. and Hanson A. D. (2010) Identification of transport-critical residues in a folate transporter from the folate-biopterin transporter (FBT) family. J. Biol. Chem. 285, 28672875.
  • Ferreira L. T., Santos M. S., Kolmakova N. G. et al. (2005) Structural requirements for steady-state localization of the vesicular acetylcholine transporter. J. Neurochem. 94, 957969.
  • Fluman N. and Bibi E. (2009) Bacterial multidrug transport through the lens of the major facilitator superfamily. BBA-Proteins Proteom. 1794, 738747.
  • Jeon J., Yang J.-S. and Kim S. (2009) Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters. PLoS Comput. Biol. 5. Available from: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000522 (accessed on 20 September 2010).
  • Khare P., White A. R. and Parsons S. M. (2009) Multiple protonation states of vesicular acetylcholine transporter detected by binding of [3H]vesamicol. Biochemistry 48, 89658975.
  • Kim M.-H., Lu M., Lim E.-J., Chai Y.-G. and Hersh L. B. (1999) Mutational analysis of aspartate residues in the transmembrane regions and cytoplasmic loops of rat vesicular acetylcholine transporter. J. Biol. Chem. 274, 673680.
  • Kim M. H., Lu M., Kelly M. and Hersh L. B. (2000) Mutational analysis of basic residues in the rat vesicular acetylcholine transporter. Identification of a transmembrane ion pair and evidence that histidine is not involved in proton translocation. J. Biol. Chem. 275, 61756180.
  • Krantz D. E., Waites C., Oorschot V., Liu Y., Wilson R. I., Tan P. K., Klumperman J. and Edwards R. H. (2000) A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles. J. Cell Biol. 149, 379395.
  • Law C. J., Almqvist J., Bernstein A., Goetz R. M., Huang Y., Soudant C., Laaksonen A., Hovmoeller S. and Wang D.-N. (2008a) Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J. Mol. Biol. 378, 826837.
  • Law C. J., Maloney P. C. and Wang D.-N. (2008b) Ins and outs of major facilitator superfamily antiporters. Ann. Rev. Microbiol. 62, 289305.
  • Law C. J., Enkavi G., Wang D.-N. and Tajkhorshid E. (2009) Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT. Biophys. J. 97, 13461353.
  • LideD. R., ed. (2010) Atomic radii of the elements, CRC Handbook of Chemistry and Physics, 90th Edition (Internet Version 2010), CRC Press/Taylor and Francis, Boca Raton, FL, pp. 949.
  • Liu Y. and Edwards R. H. (1997) Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells. J. Cell Biol. 139, 907916.
  • Nguyen M. L., Cox G. D. and Parsons S. M. (1998) Kinetic parameters for the vesicular acetylcholine transporter: two protons are exchanged for one acetylcholine. Biochemistry 37, 1340013410.
  • Ojeda A. M., Kolmakova N. G. and Parsons S. M. (2004) Acetylcholine binding site in the vesicular acetylcholine transporter. Biochemistry 43, 1116311174.
  • Parsons S. M. (2000) Transport mechanisms in acetylcholine and monoamine storage. FASEB J. 14, 24232434.
  • Patching S. G., Psakis G., Baldwin S. A., Baldwin J., Henderson P. J. F. and Middleton D. A. (2008) Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR. Mol. Membr. Biol. 25, 474484.
  • Rogers G. A. and Parsons S. M. (1989) Inhibition of acetylcholine storage by acetylcholine analogs in vitro. Mol. Pharmacol. 36, 333341.
  • Rogers G. A., Parsons S. M., Anderson D. C., Nilsson L. M., Bahr B. A., Kornreich W. D., Kaufman R., Jacobs R. S. and Kirtman B. (1989) Synthesis, in vitro acetylcholine-storage-blocking activities, and biological properties of derivatives and analogs of trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol). J. Med. Chem. 32, 12171230.
  • Rogers G. A., Kornreich W. D., Hand K. and Parsons S. M. (1993) Kinetic and equilibrium characterization of vesamicol receptor-ligand complexes with picomolar dissociation constants. Mol. Pharmacol. 44, 633641.
  • Saier M. H. J., Beatty J. T., Goffeau A. et al. (1999) The major facilitator superfamily. J. Mol. Microbiol. Biotechnol. 1, 257279.
  • Tao-Cheng J.-H. and Eiden L. E. (1998) The vesicular monoamine transporter VMAT2 and vesicular acetylcholine transporter VAChT are sorted to separate vesicle populations in PC12 cells. Adv. Pharmacol. 42(Catecholamines), 250253.
  • Tsigelny I. F., Greenberg J., Kouznetsova V. and Nigam S. K. (2008) Modeling of glycerol-3-phosphate transporter suggests a potential ‘tilt’ mechanism involved in its function. J. Bioinform. Comput. Biol. 6, 885904.
  • Tu Z., Efange S. M. N., Xu J., Li S., Jones L. A., Parsons S. M. and Mach R. H. (2009) Synthesis and in vitro and in vivo evaluation of 18F-labeled positron emission tomography (PET) ligands for imaging the vesicular acetylcholine transporter. J. Med. Chem. 52, 13581369.
  • Vardy E., Arkin I. T., Gottschalk K. E., Kaback H. R. and Schuldiner S. (2004) Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci. 13, 18321840.
  • Varoqui H. and Erickson J. D. (1996) Active transport of acetylcholine by the human vesicular acetylcholine transporter. J. Biol. Chem. 271, 2722927232.
  • Varoqui H. and Erickson J. D. (1997) Vesicular neurotransmitter transporters. Potential sites for the regulation of synaptic function. Mol. Neurobiol. 15, 165192.
  • Varoqui H. and Erickson J. D. (1998a) The cytoplasmic tail of the vesicular acetylcholine transporter contains a synaptic vesicle targeting signal. J. Biol. Chem. 273, 90949098.
  • Varoqui H. and Erickson J. D. (1998b) Dissociation of the vesicular acetylcholine transporter domains important for high-affinity transport recognition, binding of vesamicol and targeting to synaptic vesicles. J. Physiol. Paris 92, 141144.
  • Volknandt W. and Zimmermann H. (1987) Cholinergic synaptic vesicles isolated from motor nerve terminals from electric fishes to rat. Molecular composition and functional properties. Ann. NY Acad. Sci. 493( Cell. Mol. Biol. Horm.-Neurotransm.-Containing Secretory Vesicles ), 159161.
  • Yang Q., Wang X., Ye L., Mentrikoski M., Mohammadi E., Kim Y.-M. and Maloney P. C. (2005) Experimental tests of a homology model for OxlT, the oxalate transporter of Oxalobacter formigenes. Proc Natl Acad. Sci. USA 102, 85138518.
  • Zacharias N. and Dougherty D. A. (2002) Cation-π interactions in ligand recognition and catalysis. Sci. Trends Pharmacol. 23, 281287.
  • Zhu H., Duerr J. S., Varoqui H., McManus J. R., Rand J. B. and Erickson J. D. (2001) Analysis of point mutants in the Caenorhabditis elegans vesicular acetylcholine transporter reveals domains involved in substrate translocation. J. Biol. Chem. 276, 4158041587.