SEARCH

SEARCH BY CITATION

References

  • Arelin K., Kinoshita A., Whelan C. M., Irizarry M. C., Rebeck G. W., Strickland D. K. and Hyman B. T. (2002) LRP and senile plaques in Alzheimer’s disease: colocalization with apolipoprotein E and with activated astrocytes. Brain Res. Mol. Brain Res. 104, 3846.
  • Bading J. R., Yamada S., Mackic J. B., Kirkman L., Miller C., Calero M., Ghiso J., Frangione B. and Zlokovic B. V. (2002) Brain clearance of Alzheimer’s amyloid-beta40 in the squirrel monkey: a SPECT study in a primate model of cerebral amyloid angiopathy. J. Drug Target. 10, 359368.
  • Ballatore C., Lee V. M. and Trojanowski J. Q. (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663672.
  • Banks W.A., Robinson S.M., Verma S. and Morley J. E. (2003) Efflux of human and mouse amyloid beta proteins 1–40 and 1–42 from brain: impairment in a mouse model of Alzheimer’s disease. Neuroscience 121, 487492.
  • Behl M., Zhang Y., Monnot A.D., Jiang W. and Zheng W. (2009) Increased beta-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1. Toxicol. Appl. Pharmacol. 240, 245254.
  • Behl M., Zhang Y., Shi Y., Cheng J., Du Y. and Zheng W. (2010) Lead-induced accumulation of β-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 31, 524532.
  • Bell R. D. and Zlokovic B. V. (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 118, 103113.
  • Bell R. D., Sagare A. P., Friedman A. E., Bedi G. S., Holtzman D. M., Deane R. and Zlokovic B. V. (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27, 909918.
  • Bell R. D., Deane R. and Chow N. et al. (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat. Cell Biol. 11, 143153.
  • Benchenane K., Berezowski V. and Ali C. et al. (2005) Tissue-type plasminogen activator crosses the intact blood–brain barrier by low-density lipoprotein-related protein-mediated transcytosis. Circulation 111, 22412249.
  • Bertram L. and Tanzi R. E. (2010) Alzheimer disease: new light on an old CLU. Nat. Rev. Neurol. 6, 1113.
  • Bertram L., Blacker D. and Crystal A. et al. (2000) Candidate genes showing no evidence for association or linkage with Alzheimer’s disease using family-based methodologies. Exp. Gerontol. 35, 13531361.
  • Bu G., Sun Y., Schwartz A. L. and Holtzman D. M. (1998) Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein. J. Biol. Chem. 273, 1335913365.
  • Bushlin I., Petralia R. S., Wu F., Harel A., Mughal M. R., Mattson M. P. and Yao P. J. (2008) Clathrin assembly protein AP180 and CALM differentially control axogenesis and dendrite outgrowth in embryonic hippocampal neurons. J. Neurosci. 28, 1025710271.
  • Calero M., Rostagno A., Matsubara E., Zlokovic B. V., Frangione B. and Ghiso J. (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc. Res. Tech. 50, 305315.
  • Chalmers K. A., Barker R., Passmore P. A., Panza F., Seripa D., Vincenzo S., Love S., Prince J. A. and Kehoe P. G. (2010) LRP-1 variation is not associated with risk of Alzheimer’s disease. Int. J. Mol. Epidemiol. Genet. 1, 104113.
  • Chow N., Bell R. D., Deane R., Streb J. W., Chen J., Brooks A., Van Nostrand W., Miano J. M. and Zlokovic B. V. (2007) Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer’s phenotype. Proc. Natl Acad. Sci. USA 104, 823828.
  • Christoforidis M., Schober R. and Krohn K. (2005) Genetic-morphologic association study: association between the low density lipoprotein-receptor related protein (LRP) and cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 31, 1119.
  • Cirrito J. R., May P.C. and O’Dell M. A. et al. (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J. Neurosci. 23, 88448853.
  • Cirrito J. R., Deane R. and Fagan A. M. et al. (2005) P-Glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J. Clin. Invest. 115, 32853290.
  • Croy J. E., Shin W. D., Knauer M. F., Knauer D. J. and Komives E. A. (2003) All three LDL receptors homology regions of the LDL receptor-related protein bind multiple ligands. Biochemistry 42, 1304913057.
  • Deane R., Du Yan S. and Submamaryan R. K. et al. (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907913.
  • Deane R., Wu Z. and Sagare A. et al. (2004a) LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43, 333344.
  • Deane R., Wu Z. and Zlokovic B. V. (2004b) RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke 35, 26282631.
  • Deane R., Sagare A., Hamm K., Parisi M., Lane S., Finn M. B., Holtzman D. M. and Zlokovic B. V. (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin. Invest. 118, 40024013.
  • DeMattos R. B., Cirrito J. R. and Parsadanian M. et al. (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41, 193202.
  • Demeule M., Currie J-C., Bertrand Y., Ché C., Nguyen T., Régina A., Gabathuler R., Castaigne J. P. and Béliveau R. (2008) Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J. Neurochem. 106, 15341544.
  • Dodel R., Neff F., Noelker C., Pul R., Du Y., Bacher M. and Oertel W. (2010) Intravenous immunoglobulins as a treatment for Alzheimer’s disease. Drugs 70, 513528.
  • Donahue J. E., Flaherty S. L. and Johanson C. E. et al. (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol. 112, 405415.
  • Van Der Geer P. (2002) Phosphorylation of LRP1: regulation of transport and signal transduction. Trends Cardiovasc. Med. 12, 160165.
  • Ghersi-Egea J. F., Gorevic P. D., Ghiso J., Frangione B., Patlak C. S. and Fenstermacher J. D. (1996) Fate of cerebrospinal fluid-borne amyloid β-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J. Neurochem. 67, 880883.
  • Ghilardi J. R., Catton M., Stimson E. R., Rogers S., Walker L. C., Maggio J. E. and Mantyh P. W. (1996) Intra-arterial infusion of [125I]Aβ1-40 labels amyloid deposits in the aged primate brain in vivo. Neuroreport 7, 26072611.
  • Gotthardt M., Trommsdorff M., Nevitt M. F., Shelton J., Richardson J. A., Stockinger W., Nimpf J. and Herz J. (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275, 2561625624.
  • Hardy J. (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem. 110, 11291134.
  • Hardy J. and Allsop D. (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12, 383388.
  • Hardy J. A. and Higgins G. A. (1992) Alzheimer’s disease, the amyloid cascade hypothesis. Science 286, 184185.
  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353356.
  • Harold D., Abraham R. and Hollingworth P. et al. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 10881093.
  • Herring A., Yasin H., Ambrée O., Sachser N., Paulus W. and Keyvani K. (2008) Environmental enrichment counteracts Alzheimer’s neurovascular dysfunction in TgCRND8 mice. Brain Pathol. 18, 3239.
  • Herz J. (2001) The LDL receptor gene family: (un)expected signal transducers in the brain. Neuron 29, 571581.
  • Herz J. and Bock H. H. (2002) Lipoprotein receptors in the nervous system. Ann. Rev. Biochem. 71, 405434.
  • Herz J. and Strickland D. K. (2001) LRP: a multifunctional scavenger and signaling receptor. J. Clin. Invest. 108, 779784.
  • Herz J., Chen Y., Masiulis I. and Zhou L. (2009) Expanding functions of lipoprotein receptors. J. Lipid Res. 50, S287S292.
  • Hussain M. M., Strickland D. K. and Bakillah A. (1999) The mammalian low-density lipoprotein receptor family. Ann. Rev. Nutr. 19, 141172.
  • Iadecola C., Park L. and Capone C. (2009) Threats to the mind. Aging, amyloid, and hypertension. Stroke 40, S40S44.
  • Ito S., Ohtsuki S. and Terasaki T. (2006) Functional characterization of the brain-to-blood efflux clearance of human amyloid-beta peptide (1–40) across the rat blood–brain barrier. Neurosci. Res. 56, 246252.
  • Ito S., Ueno T., Ohtsuki S. and Terasaki T. (2010) Lack of brain-to-blood efflux transport activity of low-density lipoprotein receptor-related protein-1 (LRP-1) for amyloid-β peptide(1–40) in mouse: involvement of an LRP-1-independent pathway. J. Neurochem. 113, 13561363.
  • Jaeger L. B., Dohgu S. and Hwang M. C. et al. (2009) Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition. J Alzheimer’s Dis. 17, 553570.
  • Johanson C., Flaherty S., Messier A., Duncan J., III and Silverberg G. (2006) Expression of the beta-amyloid transporter, LRP-1, in aging choroid plexus: implications for the CSF-brain system in NPH and Alzheimer’s disease. Cerebrospinal Fluid Res. 3, S29.
  • Kakee A., Terasaki T. and Sugiyama Y. (1996) Brain efflux index as a novel method of analyzing efflux transport at the blood–brain barrier. J. Pharmacol. Exp. Ther. 277, 15501559.
  • Kang D. E., Saitoh T., Chen X., Xia Y., Masliah E., Hansen L. A., Thomas R. G., Thal L. J. and Katzman R. (1997) Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer’s disease. Neurology 49, 5661.
  • Kang D. E., Pietrzik C. U. and Baum L. et al. (2000) Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. J. Clin. Invest. 106, 11591166.
  • Kayed R., Head E., Thompson J. L., McIntire T. M., Milton S. C., Cotman C. W. and Glabe C. G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486489.
  • Klinge P. M., Samii A., Niescken S., Brinker T. and Silverberg G. D. (2006) Brain amyloid accumulates in aged rats with kaolin-induced hydrocephalus. Neuroreport 17, 657660.
  • Koistinaho M., Lin S. and Wu X. et al. (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat. Med. 10, 716726.
  • Lambert J. C., Wavrant-De Vrieze F., Amouyel P. and Chartier-Harlin M. C. (1998) Association at LRP gene locus with sporadic late-onset Alzheimer’s disease. Lancet 351, 17871788.
  • Lambert J. C., Heath S. and Even G. et al. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 41, 10941099.
  • LaRue B., Hogg E., Sagare A., Jovanovic S., Maness L., Maurer C., Deane R. and Zlokovic B. V. (2004) Method for measurement of the blood–brain barrier permeability in the perfused mouse brain: application to amyloid-β peptide in wild type and Alzheimer’s Tg2576 mice. J. Neurosci. Methods 138, 233242.
  • LaRue B. A., Cheng T., Pinkert C., Deane R. and Zlokovic B. V. (2007) A new mouse model expressing the amyloid beta clearance receptor at the blood–brain barrier. Program No. 156.1/T13. 2007 Neuroscience meeting planner. Society for Neuroscience, San Diego, CA, (Online)
  • Lesné S., Koh M. T., Kotilinek L., Kayed R., Glabe C. G., Yang A., Gallagher M. and Ashe K. H. (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352357.
  • Li Y., Lu W., Marzolo M. P. and Bu G. (2001) Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J. Biol. Chem. 276, 1800018006.
  • Lillis A. P., Van Duyn L. B., Murphy-Ullrich J. E. and Strickland D. K. (2008) LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol. Rev. 88, 887918.
  • Mackic J. B., Stins M. and McComb J. G. et al. (1998a) Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102, 734743.
  • Mackic J. B., Weiss M. H., Miao W., Kirkman E., Ghiso J., Calero M., Bading J., Frangione B. and Zlokovic B. V. (1998b) Cerebrovascular accumulation and increased blood–brain barrier permeability to circulating Alzheimer’s amyloid beta peptide in aged squirrel monkey with cerebral amyloid angiopathy. J. Neurochem. 70, 210215.
  • Mackic J. B., Bading J., Ghiso J., Walker L., Wisniewski T., Frangione B. and Zlokovic B. V. (2002) Circulating amyloid-beta peptide crosses the blood–brain barrier in aged monkeys and contributes to Alzheimer’s disease lesions. Vascul. Pharmacol. 38, 303313.
  • Mann G. E., Zlokovic B. V. and Yudilevich D. L. (1985) Evidence for a lactate transport system in a sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Biochim. Biophys. Acta 819, 241248.
  • Martel C. L., Mackic J. B., McComb J. G., Ghiso J. and Zlokovic B. V. (1996) Blood–brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer’s amyloid beta in guinea-pigs. Neurosci. Lett. 206, 157160.
  • Martel C. L., Mackic J. B. and Matsubara E. et al. (1997) Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood–brain barrier transport of circulating Alzheimer’s amyloid beta. J. Neurochem. 69, 19952004.
  • McGeer P. L. and McGeer E. G. (2004) Inflammation and the degenerative diseases of aging. Ann. N Y Acad. Sci. 1035, 104116.
  • McGeer P. L. and Rogers J. (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42, 447449.
  • Meijer A. B., Rohlena J., Van Der Zwaan C., Van Zonneveld A. J., Boertjes R. C., Lenting P. J. and Mertens K. (2007) Functional duplication of ligand-binding domains within low-density lipoprotein receptor-related protein for interaction with receptor associated protein, alpha2-macroglobulin, factor IXa and factor VIII. Biochim. Biophys. Acta 1774, 714722.
  • Miller M. C., Tavares R., Johanson C. E., Hovanesian V., Donahue J. E., Gonzalez L., Silverberg G. D. and Stopa E. G. (2008) Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res. 1230, 273280.
  • Moir R. D. and Tanzi R. E. (2005) LRP-mediated clearance of Aβ is inhibited by KPI-containing isoforms of APP. Curr. Alzheimer Res. 2, 269273.
  • Monro O. R., Mackic J. B., Yamada S., Segal M. B., Ghiso J., Maurer C., Calero M., Frangione B. and Zlokovic B. V. (2002) Substitution at codon 22 reduces clearance of Alzheimer’s amyloid-beta peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol. Aging 23, 405412.
  • Narita M., Holtzman D. M., Schwartz A. L. and Bu G. (1997) Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J. Neurochem. 69, 19041911.
  • Nazer B., Hong S. and Selkoe D. J. (2008) LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-beta peptide in a blood–brain barrier in vitro model. Neurobiol. Dis. 30, 94102.
  • Neels J.G., Van Den Berg B. M. M., Lookene A., Olivecrona G., Pannekoek H. and Van Zonneveld A-J. (1999) The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties. J. Biol. Chem. 274, 3130531311.
  • Obermoeller-McCormick L. M., Li Y., Osaka H., FitzGerald D. J., Schwartz A. L. and Bu G. (2001) Dissection of receptor folding and ligand-binding property with functional minireceptors of LDL receptor-related protein. J. Cell Sci. 114, 899908.
  • Pan W., Kastin A. J., Zankel T. C., Van Kerkhof P., Terasaki T. and Bu G. (2004) Efficient transfer of receptor-associated protein (RAP) across the blood–brain barrier. J. Cell Sci. 117, 50715078.
  • Parkyn C. J., Vermeulen E. G. M. and Mootoosamy R. C. et al. (2008) LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein. J. Cell Sci. 121, 773783.
  • Pietrzik C. U., Yoon I. S., Jaeger S., Busse T., Weggen S. and Koo E. H. (2004) FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J. Neurosci. 24, 42594265.
  • Poduslo J. F., Curran G. L., Haggard J. J., Biere A. L. and Selkoe D. J. (1997) Permeability and residual plasma volume of human, Dutch variant, and rat amyloid β protein 1–40 at the blood–brain barrier. Neurobiol. Dis. 4, 2734.
  • Polavarapu R., Gongora M.C., Yi H., Ranganathan S., Lawrence D. A., Strickland D. and Yepes M. (2007) Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood 109, 32703278.
  • Qiu Z., Strickland D. K., Hyman B. T. and Rebeck G. W. (1999) Alpha2-macroglobulin enhances the clearance of endogenous soluble beta-amyloid peptide via low-density lipoprotein receptor-related protein in cortical neurons. J. Neurochem. 73, 13931398.
  • Rebeck G. W., Harr S. D., Strickland D. K. and Hyman B. T. (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. Ann. Neurol. 37, 211217.
  • Relkin N. R., Szabo P. and Adamiak B. et al. (2009) 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol. Aging 30, 17281736.
  • Sagare A., Deane R. and Bell R. D. et al. (2007a) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat. Med. 13, 10291031.
  • Sagare A. P., Deane R. and Zlokovic B. V. (2007b) LRP1 and RAGE regulate normal amyloid β-peptide homeostasis in the CNS. Program No. 689.19/L3. 2007 Neuroscience meeting planner. Society for Neuroscience, San Diego, CA, (Online)
  • Sagare A. P., Deane R., Zetterberg H., Blennow K. and Zlokovic B. V. (2009) sLRP1: a potential biomarker of mild cognitive impairment and Alzheimer’s disease?. Program No. 139.21/D31. 2009 Neuroscience meeting planner. Society for Neuroscience, Chicago, IL, (Online)
  • Selkoe D. J. (1991) The molecular pathology of Alzheimer’s disease. Neuron 6, 487498.
  • Selkoe D. J. (2001a) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741766.
  • Selkoe D. J. (2001b) Clearing the brain’s amyloid cobwebs. Neuron 32, 177180.
  • Shibata M., Yamada S. and Kumar S. R. et al. (2000) Clearance of Alzheimer’s amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J. Clin. Invest. 106, 14891499.
  • Shiiki T., Ohtsuki S., Kurihara A., Naganuma H., Nishimura K., Tachikawa M., Hosoya K. and Terasaki T. (2004) Brain insulin impairs amyloid-beta (1–40) clearance from the brain. J. Neurosci. 24, 96329637.
  • Shinohara M., Sato N., Kurinami H., Takeuchi D., Takeda S., Shimamura M., Yamashita T., Uchiyama Y., Rakugi H. and Morishita R. (2010) Reduction of brain Aβ by fluvastatin, an HMG-CoA reductase inhibitor, through increase in degradation of APP-CTFs and Aβ clearance. J. Biol. Chem. 285, 2209122102.
  • Silverberg G. D., Mayo M., Saul T., Rubenstein E. and McGuire D. (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol. 2, 506511.
  • Szentistvanyi I., Patlak C. S., Ellis R. A. and Cserr H. F. (1984) Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835F844.
  • Tamaki C., Ohtsuki S., Iwatsubo T., Hashimoto T., Yamada K., Yabuki C. and Terasaki T. (2006) Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid β-peptide by the liver. Pharm. Res. 23, 14071416.
  • Tamaki C., Ohtsuki S. and Terasaki T. (2007) Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1–40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Mol. Pharmacol. 72, 850855.
  • Tanzi R. E., Moir R. D. and Wagner S. L. (2004) Clearance of Alzheimer’s Aβ peptide: the many roads to perdition. Neuron 43, 605608.
  • Tebar F., Bohlander S. K. and Sorkin A. (1999) Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol. Biol. Cell 10, 26872702.
  • De La Torre J. C. (2010) Vascular risk factor detection and control may prevent Alzheimer’s disease. Aging Res Rev. 9, 218225.
  • Trommsdorff M., Borg J. P., Margolis B. and Herz J. (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 3355633560.
  • Ujiie M., Dickstein D. L., Carlow D. A. and Jefferies W. A. (2003) Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer’s disease model. Microcirculation 10, 463470.
  • Waldron E., Heilig C., Schweitzer A., Nadella N., Jaeger S., Martin A. M., Weggen S., Brix K. and Pietrzik C. U. (2008) LRP1 modulates APP trafficking along early compartments of the secretory pathway. Neurobiol. Dis. 31, 188197.
  • Walsh D. M., Klyubin I. and Shankar G. M. et al. (2005) The role of cell-derived oligomers of Aβ in Alzheimer’s disease and avenues for therapeutic intervention. Biochem. Soc. Trans. 33, 10871090.
  • Wavrant-DeVrieze F., Lambert J. C. and Stas L. et al. (1999) Association between coding variability in the LRP gene and the risk of late-onset Alzheimer’s disease. Hum. Genet. 104, 432434.
  • Weber A., Engelmaier A., Teschner W., Ehrlich H. J. and Schwarz H. P. (2009) Intravenous immunoglobulin (IVIg) gammagard liquid contains anti-RAGE IgG and sLRP. Alzheimer Dement. 5, P416.
  • Weller R. O., Subash M., Preston S. D., Mazanti I. and Carare R. O. (2008) Perivascular drainage of amyloid-β peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 18, 253266.
  • Wu Z., Guo H. and Chow N. et al. (2005) Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat. Med. 11, 959965.
  • Yamada K., Hashimoto T. and Yabuki C. et al. (2008) The low density lipoprotein receptor-related protein 1 mediates uptake of amyloid beta peptides in an in vitro model of the blood–brain barrier cells. J. Biol. Chem. 283, 3455434562.
  • Yan S. D., Chen X. and Fu J. et al. (1996) RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382, 685691.
  • Yan S. F., Ravichandran R. and Schmidt A. M. (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ. Res. 106, 842853.
  • Zerbinatti C. V. and Bu G. (2005) LRP and Alzheimer’s disease. Rev. Neurosci. 16, 123135.
  • Zerbinatti C. V., Wozniak D. F. and Cirrito J. et al. (2004) Increased soluble amyloid-beta peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc. Natl Acad. Sci. USA 101, 10751080.
  • Zlokovic B. V. (1996) Cerebrovascular transport of Alzheimer’s amyloid beta and apolipoproteins J and E: Possible anti-amyloidogenic role of the blood–brain barrier. Life Sci. 59, 14831497.
  • Zlokovic B. V. (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 28, 202208.
  • Zlokovic B. V. (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178201.
  • Zlokovic B. V., Ghiso J., Mackic J. B., McComb J. G., Weiss M. H. and Frangione B. (1993) Blood–brain barrier transport of circulating Alzheimer’s amyloid beta. Biochem. Biophys. Res. Commun. 197, 10341040.
  • Zlokovic B. V., Martel C. L., Matsubara E., McComb J. G., Zheng G., McCluskey R. T., Frangione B. and Ghiso J. (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood–brain and blood–cerebrospinal fluid barriers. Proc. Natl Acad. Sci. USA 93, 42294234.
  • Zlokovic B. V., Yamada S., Holtzman D., Ghiso J. and Frangione B. (2000) Clearance of amyloid beta-peptide from brain: transport or metabolism?. Nat. Med. 6, 718.
  • Zlokovic B. V., Srivastava A., Bell R. D., Sagare A., Larson A., Van Nostrand W. E., Singh I. and Deane R. (2009) LRP1-cluster IV with an improved Alzheimer’s Aβ binding specific activity exerts an enhanced Aβ sink action in mice. Program No. 236.10/F10. 2009 Neuroscience meeting planner. Society for Neuroscience, Chicago, IL, (Online)
  • Zloković B. V., Segal M. B., Begley D. J., Davson H. and Rakić L. (1985) Permeability of the blood–cerebrospinal fluid and blood–brain barriers to thyrotropin-releasing hormone. Brain Res. 358, 191199.
  • Zurhove K., Nakajima C., Herz J., Bock H. H. and May P. (2008) γ-Secretase limits the inflammatory response through the processing of LRP1. Sci. Signal. 1, ra15.